Answers to Selected Exercises
Chapter 7 SYSTEMS OF FIRST-ORDER
DIFFERENTIAL EQUATIONS
- a. linear b. (0, oo)
555
c. (-oo, oo) Because y 1 , yz, y~, and Y2 are all defined and continuous
at x = 0, but the system of differential equations (25) is not defined
at x = 0. No, because the initial value problem (25) is undefined at
x = o.
- a. nonlinear
b. There is a solution on some subinterval of ( -7r /2, 7r /2) containing
the point x = 0. - a. nonlinear
b. There is a solution on some subinterval of (-3, 4) containing the
point x = 0.
c. x , -3+, x , 4-, Y1 , -2+, Y1 , +oo, Y2 , -oo, Y2 , 2-. - a. Let u1 = y, Uz = y(l), U3 = yC^2 ), and U4 = yC^3 ). Then
u~ = u2
u2 = U3
u3 = U4
u4 = -3xui + u~ - exu3u 4 + x^2 - 1
b. Let u1 = y and u2 = y'. Then
u~ = u2
I C k.
u 2 =--u2--smu1
m m
e. Let u 1 = y, u 2 = y', u3 = z, and u4 = z'. Then
u~ = u2
u2 = 2u1 - 3u4
u3 = U4
u4 = 3u2 - 2u3