1550078481-Ordinary_Differential_Equations__Roberts_

(jair2018) #1
Answers to Se lected Exercises 569


  1. T he so lution of case a. spirals outward toward the solution of case b. The
    solution of case c. spirals inward toward the solution of case b.


May's Prey-Predator Mo d e l



  1. The solution of case a. spirals inward toward the solution of case b. The
    solution of case c. spirals outward toward the solution of case b.


Competing S pecies Models


  1. a. (80/7, 24/7)
    b.
    (i) (ii) (iii) (iv)
    limt, 00 x(t) ~ 0 20 20 0
    limt
    , 00 y(t) ~ 12 0 0 12
    extinct species x y y x

  2. a. (i) None


(ii) 1 - 4 limt, 00 x(t) = 10 limt, 00 y(t) = 0, y becomes extinct.

b. (i) ( 4, 2) (ii) 1 - 4 limt-->oo x(t) = 4 limt__, 00 y(t) = 2

c. (i) None
(ii) 1 - 4 limt__, 00 x(t) = 0 limt__, 00 y(t) = 4, x becomes extinct.

Exercises 1 0.6 E p idemics

l. a. 300 c. (i) 8(5) = 232 (ii) 8(5) = 150

3. Yes (i) 8(5) = 148 (ii) 8(5) = 114

Exercises 10. 7 P e n dulums


l. The period varies with Y2(0).


  1. y~ = Y2


y~ = 2wy4 sin</> - gyif C

Y~ = Y4

Y4 = -2wy2 sin </> - gy3 / C

where Y1 = x, Y2 = x', y3 = y , and Y4 = y'.

a. y 3 (6.28) = 0, The plane of oscillation does not appear to rotate.

b. y 3 (6.28) = -3.238823£ - 04; 1.41 days

c. y 3 (6.28) = 3.238823E - 04; 1.41 days
Free download pdf