1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1
Functions. Limits and Continuity. Arcs and Curves 171

G

Fig. 3.31

Bibliography


  1. L. V. Ahlfors and L. Sario, Riemann Surfaces, Princeton University Press,
    Princeton, N.J., 1960.

  2. S. Bergmann, Zur Veranschaulichung des Kreiskorper und Beriche mit
    ausgezeichnetes Randflache, Jahresber. Dtsch. Math. Ver., 42 (1933), 238-252.

  3. S. Bergmann, The visualization of domains of the theory of functions of two
    complex variables, J. Math. Phys., 20 (1941), 107-117.

  4. S. Bergmann, Models in the theory of several complex variables, Amer. Math.
    Monthly, 53 (1946), 495-501.

  5. W. G. Chinn and N. E. Steenrod, First Concepts of Topology, Random House-

    1. W. Singer, New York, 1966.



  6. J. D. Depree and C. C. Oehring, Elements of Complex Analysis, Addison-
    Wesley, Reading, Mass., 1969.

  7. D. W. Hall and G. L. Spencer, Elementary Topology, Wiley, New York, 1955.

  8. L. Heffter, Begrundung der Funktionentheorie auf alten und neuen Wegen, 2nd
    ed., Springer-Verlag, Berlin, 1960.

  9. E. Jahnke and F. Emde, Funktionentafeln mit Formeln und Kurven, 4th rev.
    ed., Dover, New York, 1945.

  10. C. Jordan, Cours d'Analyse de l'Ecole Polytechnique, 2nd ed., Paris, 1893.
    11. J. R. Kline. What is the Jordan curve theorem? Amer. Math. Monthly, 49
    (1942), 281-286
    12. M. Murrill, On a hyperanalytic geometry for complex functions, Amer. Math.
    Monthly, 87 (1980), 8-25.
    13. M. H. A. Newman, Elements of the Topology of Plane Sets of Points, 2nd ed.,
    Cambridge University Press, Cambridge, 1951.

Free download pdf