1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1

212


oo I
(e) "'"'2 ;_,J !::_Zn nn
n=l

(^00) ( I )2
(g) L (~~ )! Zn
n=l
(


i) ~ 22.42···(2n)2 Zn


~ 32 · 52 · · · (2n + 1)^2


00

0

(^00) ( I )3
(h) "'\' ~ n
~ (3n)! z
( j ) 2 -z+···+^1 2n.3n-l^1 z 2n-1 + --z 2n.3n^1 Zn +···
(k) f (-~r zn(n+l)
n=l
Chapter4
In part (k) determine whether or not the series converges for z = i.


If the series converges, find its sum.



  1. Find the region of absolute convergence of each of the following.
    oo 1 oo 3n
    (a) L2n+1+1(z-1r (b) L5n+1(z+2r
    n=O n=O
    00 00
    .,.---. 3 "'\'
    (c) 2.,qn (z-3t (lql < 1) (d) L..,nP(z-2t
    0 1


(e) f 1 ;:2n Cf) f (2:zf
n=O n=O


  1. Suppose that the radius of convergence of :Z:::::'=o anzn is R. Find the
    radius of convergence of each of the following series.
    00 00


(a) :Sanz^2 n (b) L:a;zn


oo^0 oo·^0
(c) L anzn (d) L nkanzn
0 0


  1. Find the sum function of the series :Z:::;;"'[cos(2mr/3)]zn


17. Show that if :Z:::;;"' an·Zn converges for z = z 0 , it converges absolutely for

every z such that lzl < Jz 0 J. If the series diverges for z = z 0 , it diverges

for every z such that Jzl > lzol (Abel's theorem).

18. If I;;;'° anzn has radius of convergence R -j. 0, show that the series


converges uniformly on every compact set ]{ contained in lzl < R.


  1. Prove that if :Z:::;;"' anzn has radius of convergence R (0 < R < oo)
    and the series converges absolutely for z = ReiBo, then it converges
    absolutely and uniformly on JzJ :S .R.


20. If :Z:::;;"' anzn has radius of convergence R1 and :Z:::;;"' bnzn has radius of


convergence R 2 , prove the following.
00
(a) The radius of convergence of L(an + bn)zn is R = min(R1,R2).
0
Free download pdf