1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1
Sequences and Series 213

00
(b) The radius of convergence of L anbnzn is R;::: R1R2.
0

21. Show that :L:=l (1/n^2 )zn converges at every point of lzl = 1.



  1. Show that the series :L;'° zn! diverges at every point of the circle lzl = 1.

  2. Show that the series :L~ z^2 n diverges at every point of lzl = 1.

  3. Prove Corollary 4.4.

  4. Use the characterization of uniform continuity in Exercises 3.2, prob-
    lem 8, to show that if a sequence of uniformly continuous functions
    from a metric space ( X, d) into (Y, d') converges uniformly on X, the
    limit function is uniformly continuous on X.
    *26. Suppose that (1) :L;'° an converges, (2) an > 0, and (3) an ;::: an+I for
    all n. Prove that nan ----7 0 as n ----7 oo.


Bibliography


  1. L. V. Ahlfors, Complex Analysis, 3rd ed., McGraw-Hill, New York, 1979.

  2. E. Borel, Les;ons sur les series divergentes, Gauthier-Villars, Paris, 1928.

  3. E. Cesaro, sur la multiplication des series, Bull. Sci. Math., 14 (1890), 114-120.

  4. M. 0. Gonzalez, Sabre el calculo de! radio de convergencia de las series de
    potencias, Rev. Soc. Cub. Ci. Fis. Mat., 1 (1943), 84-87.

  5. M. 0. Gonzalez, Ensayo sabre las series divergentes, Rev. Univ. Habana (1944-
    45), 52-63.

  6. G. H. Hardy, Divergent Series, Oxford Univ. Press, Oxford. 1949.



    1. Holder, Grenzwerte von Reihen und der Convergenzgrenze, Math. Ann.20
      (1882), 535-549.



  7. F. Mertens, Uber die Multiplicationsregel fiir zwei unenliche Reihen, J. Reine
    Angew. Math., 79 (1875), 182-184.

  8. C. N. Moore, Summable Series and Convergence Factors, Colloquium
    Publication 22, American Mathematical Society, Providence, R.I., 1938.

  9. L. Smail, Elements of the Theory of Infinite Processes, McGraw-Hill, New
    York, 1923.

  10. L. Smail, History and Synopsis of the Theory of Summable Infinite Processes,
    Oregon, 1925.

  11. J. Rey Pastor, Elementos de Analisis Algebraico, 15th ed., Madrid, 1966.

  12. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed.,
    Cambridge University Press, Cambridge, 1927.

  13. K. Zeller, Theorie der Limitierungsverfahren, Ergebnisse der Mathematik,
    Vol. 15, Springer-Verlag, Berlin, 1958.

Free download pdf