Sequences and Series 213
00
(b) The radius of convergence of L anbnzn is R;::: R1R2.
0
21. Show that :L:=l (1/n^2 )zn converges at every point of lzl = 1.
- Show that the series :L;'° zn! diverges at every point of the circle lzl = 1.
- Show that the series :L~ z^2 n diverges at every point of lzl = 1.
- Prove Corollary 4.4.
- Use the characterization of uniform continuity in Exercises 3.2, prob-
lem 8, to show that if a sequence of uniformly continuous functions
from a metric space ( X, d) into (Y, d') converges uniformly on X, the
limit function is uniformly continuous on X.
*26. Suppose that (1) :L;'° an converges, (2) an > 0, and (3) an ;::: an+I for
all n. Prove that nan ----7 0 as n ----7 oo.
Bibliography
- L. V. Ahlfors, Complex Analysis, 3rd ed., McGraw-Hill, New York, 1979.
- E. Borel, Les;ons sur les series divergentes, Gauthier-Villars, Paris, 1928.
- E. Cesaro, sur la multiplication des series, Bull. Sci. Math., 14 (1890), 114-120.
- M. 0. Gonzalez, Sabre el calculo de! radio de convergencia de las series de
potencias, Rev. Soc. Cub. Ci. Fis. Mat., 1 (1943), 84-87.
- M. 0. Gonzalez, Ensayo sabre las series divergentes, Rev. Univ. Habana (1944-
45), 52-63.
- G. H. Hardy, Divergent Series, Oxford Univ. Press, Oxford. 1949.
- Holder, Grenzwerte von Reihen und der Convergenzgrenze, Math. Ann.20
(1882), 535-549.
- F. Mertens, Uber die Multiplicationsregel fiir zwei unenliche Reihen, J. Reine
Angew. Math., 79 (1875), 182-184.
- C. N. Moore, Summable Series and Convergence Factors, Colloquium
Publication 22, American Mathematical Society, Providence, R.I., 1938.
- L. Smail, Elements of the Theory of Infinite Processes, McGraw-Hill, New
York, 1923.
- L. Smail, History and Synopsis of the Theory of Summable Infinite Processes,
Oregon, 1925.
- J. Rey Pastor, Elementos de Analisis Algebraico, 15th ed., Madrid, 1966.
- E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed.,
Cambridge University Press, Cambridge, 1927.
- K. Zeller, Theorie der Limitierungsverfahren, Ergebnisse der Mathematik,
Vol. 15, Springer-Verlag, Berlin, 1958.