1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1

276 Chapter^5


1 1 '
sechz = cschz = --
cosh z ' sinh z
where coth z and csch z are not defined for z = krri, while tanh z, sech z


are not defined for z = %(2k + l)rri.


From (5.19-6) the following identities follow:


  1. ez = coshz + sinhz, e-z = coshz - sinhz

  2. cosh(-z) ·= coshz, sinh(-z) = - sinh(z)

  3. cosh(z + 2krri) = coshz,sinh(z + 2k'ffi) = sinhz

  4. cosh^2 z - sinh^2 z = 1

  5. 1 - tanh^2 z = sech^2 z, coth^2 z - 1 = csch^2 z


6. cosh( z 1 + z 2 ) = cosh z 1 cosh z2 + sinh z1 sinh z2


7. sinh(z 1 + z 2 ) = sinhz 1 coshz 2 + coshz 1 sinhz 2


etc.
In the complex case the hyperbolic functions are not essentially different
from the circular functions. In fact, we have


and similarly,

eiz _ e-iz
sinh iz = = i sin z
2
eiz + e-iz
cosh iz = ----= cos z
2

tanhiz = itanz

etc.

sin iz = i sinh z

cos iz = cosh z

taniz = itanhz

etc.

(5.19-7)

(5.19-8)
Hence each circular identity implies a corresponding hyperbolic identity,

and vice versa. For instance, cos^2 iz + sin^2 iz = 1 implies that cosh^2 z -


sinh^2 z == 1.

Formulas (5.19-8) may be used to separate sin z, cos z, tan z, ... into


real and imaginary parts, and similarly, (5.19-7) may be used to the same
purpose in connection with hyperbolic functions. For instance, we have
w = u +iv= sin(x + iy) = sinxcosiy + cosxsiniy
= sin x cosh y + i cos x sinh y (5.19-9)
so that
u = sinx cosh y, v = cosxsinhy (5.19-10)
Free download pdf