1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1

Complex Numbers 23


Theorem 1.5 (Lagrange's Identity). If {z 1 , z 2 , ... , Zn} and {w1, w2, ... ,


wn} are two sets of n complex numbers (n 2:: 1), then

n^2 n n
Lzkwk = L lzkl

2


L lwkl

2



  • L lz;wk -Zkw;l


(^2) (1.6-11)


k=l k=l · k=l l:Si9:Sn


Proof We have


I


t ZkWkl


2
= (z1w1 + · · · + ZnWn)(z1w1 + · · · + ZnWn)
k=l
= lz11^2 Jw11^2 + · · · + lznl^2 lwnl^2 + LZiWiZjWj
i#j

and
n n

= Jz1J


2


lw11

2



  • · · · + lznl


2


lwnl

2


+ L(z;wiz;w; + z;wiz;w;)
i<j

L lzkl^2 L lwkl^2 = (iz11^2 + · · · + lznl^2 )(lw11


2



  • · · · + lwnl


2


)


k=l k=l.


(1.6-12)

= Jz1l^2 iwiJ2 + · · · + lznl


2


lwnl

2


+ L Jz;J
2
1wil

2


i-:f.j

= lz1l^2 lw1l^2 + · · · + lznl


2


lwnl

2


+ L(z;.Z;WjWj + Zj.Z;w;w;)


i<j

Subtracting (1.6-12) from (1.6-13), we get

t, iz.1' t, 1w,1' -It, z,w, '


= L[z;wi(z;w; - z;w;) - z;w;(z;w; -ziw;)]
i<j

= L(z;wi - z;w;)(z;w; - z;w;)


i<j
= L jz;Wj - Zjw;J^2
i<i

which is equivalent to (1.6-11).

(1.6-13)

(1.6-14)
Free download pdf