Complex Numbers 23
Theorem 1.5 (Lagrange's Identity). If {z 1 , z 2 , ... , Zn} and {w1, w2, ... ,
wn} are two sets of n complex numbers (n 2:: 1), then
n^2 n n
Lzkwk = L lzkl
2
L lwkl
2
- L lz;wk -Zkw;l
(^2) (1.6-11)
k=l k=l · k=l l:Si9:Sn
Proof We have
I
t ZkWkl
2
= (z1w1 + · · · + ZnWn)(z1w1 + · · · + ZnWn)
k=l
= lz11^2 Jw11^2 + · · · + lznl^2 lwnl^2 + LZiWiZjWj
i#j
and
n n
= Jz1J
2
lw11
2
- · · · + lznl
2
lwnl
2
+ L(z;wiz;w; + z;wiz;w;)
i<j
L lzkl^2 L lwkl^2 = (iz11^2 + · · · + lznl^2 )(lw11
2
- · · · + lwnl
2
)
k=l k=l.
(1.6-12)
= Jz1l^2 iwiJ2 + · · · + lznl
2
lwnl
2
+ L Jz;J
2
1wil
2
i-:f.j
= lz1l^2 lw1l^2 + · · · + lznl
2
lwnl
2
+ L(z;.Z;WjWj + Zj.Z;w;w;)
i<j
Subtracting (1.6-12) from (1.6-13), we get
t, iz.1' t, 1w,1' -It, z,w, '
= L[z;wi(z;w; - z;w;) - z;w;(z;w; -ziw;)]
i<j
= L(z;wi - z;w;)(z;w; - z;w;)
i<j
= L jz;Wj - Zjw;J^2
i<i
which is equivalent to (1.6-11).
(1.6-13)
(1.6-14)