Complex Numbers 25
numbers other than -1 can be put into one-to-one correspondence with
the real numbers.
8. If u and v are unimodular, show that (u+v)/(l+uv) (uv i--1) is real.
9. If lzkl < 1, rk 2'.: O, and E~=l rk = 1, prove that
10. If IPI < 1 and lql < 1, prove that:
(a) I p-q I< 1 (b) IPI -lql
1 -pq 1 - lpllql I
p-q I
~ 1-pq
- Show that
-- =1
I
p-qi
1-pq
if either IPI = 1 or lql = 1, or if IPI = lql = 1 provided that p i-q.
- Prove the identity
IP+ ql^2 + IP -ql^2 = 2[IPl^2 + lql^2 l
In particular, if IPI = lql, then
IP+ ql^2 + IP -ql^2 = 4IPl^2
- Prove the identity
lz11^2 + lz2 l^2 + l;a 12 + lz1 + z2 + za 1
2
= lz1 + z2 l
2
- h + za 1
2
+ lza + Z11
2
- Prove the identity
11 - ab12 -la -bl2 = (1 + labl)2 -(lal + lbi)^2
15. If Re a > 0 and Re b > O, show that
la -bl < la+ bl
- Prove the identity
.
(a - b)(l +cc)= (a - c)(l +be)+ (c - b)(l + ac)
*17. Show that
(1 + zw)(l + zw) ~ (1 + lzl^2 )(1 + lwl^2 )
and use it together with the identity in Problem 16 to prove that
la -bl(l + lcl2)1/2 ~ la -cl(l + lbl2)1/2 + le - bl(l + lal2)1/2
- Show that