Differentiation 401
which is a generalization of the Laplace equation.
(1) J. D. Abercrombie in [1] uses M. Itoh bicomplex numbers (see
Section 1.19 and reference [15] at the end of Chapter 1) to develop a quater-
nionic function theory. Other approaches to this theory have been proposed
by G. C. Moisil [86] and by R. Fueter [41]. See also C. A. Deavors [32] and
F. F. Brackx [18]. By considering Cayley's octaves (see Section 1.19) as
ordered pairs of quaternions, P. Dentoni and M. See have extended the
theory to the Cayley algebra in [31].
(m) J. Ferrand [40], H. A. Heilbronn [61], R. Isaacs [64], A. C. Allen and
B. H. Murdoch [2], A. Terracini ([116] and [117]), R. J. Duffin [36], and
J. R. Hundhausen [63] have considered classes of functions called preholo-
morphic and preharmonic by Bouligand and Ferrand, discrete analytic and
discrete harmonic by Heilbronn, Duffin, and Hundhausen, and monodriffic
by Terracini and Isaacs. They are also referred to as lattice functions.
(n) For other generalizations of analytic function theory we refer the
reader to the papers by C. G. Costley [26], W. F. Eberlein [38], P. Kra-
jkiewicz [74], G. B. Rizza [103], M. N. Rosculet [106], M. S. K. Sastry
[108], and M. B. Balk and M. P. Zuev [3].
BIBLIOGRAPHY
- J. D. Abercrombie, Bicomplex quaternionic function theory, University of
Alabama dissertation, 1970. - A. C. Allen and B. H. Murdoch, A note on preharmonic functions, Proc.
Amer. Math. Soc., 4 (1953), 842-852. - M. B. Balk and M. F. Zuev, On polyanalytic functions, Russian Math. Surveys,
25 (1970), 201-223 (London Math. Soc. translation from Uspekhi Mat. Mekh.
25 (1970), 203-226.) - E. F. Barnett, On a certain class of generalized analytic functions, University
of Alabama dissertation, 1968. - H. S. Bear and G. N. Hile, Gradient characterization of analyticity, Amer.
Math. Monthly, 85 (1978), 333-337. - H. A. von Beckh-Widmanstetter, Lasst sich die Eigenschaft der analytichen
Funktionen einer gemeinen komplexen Veranderlichen, Monatsh. Math. Phys.,
23 (1912), 257-260. - E. Beltrami, Della variabili complessa sopra una superficie qualunque, Ann.
Mat. 2a. ser. 1 (1867-68), 329-366. - L. Bers, The expa'usion theorem for sigma-monogenic functions, Amer. J.
Math., 72 (1950), 705-712.