450 Chapter?
If we put
j k
Zjk = h( N ' N ), j, k = 0, 1, ... 'N
j j+l k k+l
Sjk = [ N , JV] x [ N , 1\T ], j, k = 0, ... , N - 1
then h(S,;k) C Dr(Zjk) CA, where Dr(Zjk) = {z: lz - Zjkl < r }. Next let
ri+l,k
P(j,k) = lzjk. f(z)dz, (j, k) E LN-1,N
rj,k+l
Q(j,k) = Jzjk f(z)dz, (j, k) E LN,N-1
All three points Zjk, Zj+l,k, Zj,k+l lie in the disk Dr(Zjk), so as a conse-
quence of Corollary 7.9, the integrals above are independent of the path
lying in Dr(Zjk) and joining Zjk to Zj+i,k• or to Zj,k+l·
For (j, k) E LN-1,N-1, we have
(D.xQ - D.yP)(j, k)
= [Q(j + 1, k) -Q(j, k)] - [P(j, k + 1) -P(j, k)]
{
rzj+l,k+l {Zj,k+1 rzj+l,k+l {Zj+l,k}
= Jz - Jz - Jz + Jz J(z) dz
Zj+l,k Zjk Zj,k+l Zjk
{
ri+l,k ri+l,k+l rj,k+l rjk }
= Jz + Jz + Jz + Jz J(z) dz= O (^7 .lO-ll)
Zjk Zj+l,k Zj+l,k+l Zj,k+l
by CoroHary 7.9 as applied to the quadrilateral contour with vertices Zjk,
Zj+i,k, Zj+i,k+l, Zj,k+l contained in the disk Dr(Zjk)·
On the other hand,
J PD.x + QD.y
8LNN
N-1 N-1 N-1 N-1
= L P(j,O) + L Q(N, k)-L P(j,N)-L: Q(O, k)
j=O k=O j=O k=O
N-1 lh((j+l)/N,O) N-1
1
h(l,(k+l)/N)
·- L. f(z)dz+ L f(z)dz
j=O h(3/N,O) k=O h(l,k/N)
N-1
1
h((j+l)/N,1) N-1 lh(O,(k+l)/N)
- L. J(z)dz - L f(z)dz
j=O h(3/N,l) k=O h(O,k/N)