466 Chapter^7
y
-u + ia ia z = x + ia u + ia
z = -u + iy
z = u + iy
z = x
-u 0 u x
Fi.g. 7.l'T
Decomposing ('/.15-1) into four integrals each along a side of R, we
obtain
j
u e-x^2 dx+ la .e-(u+iy)^2 idy+ f,-u e~(x+ia)^2 dx+ (^10) e-(-u+iy)^2 idy=O
-u 0 u a
or
2 fu e-x^2 dx - ea^2 ju e-x\ cos 2ax - i sin 2ax) dx
lo -u
- 2e-u
2
1a eY
2
sin2uy dy = 0
By equating to zero the real part of the left-hand side, we find that
2 2 2 2 2.
l
2 u e-x dx - ea ju e-x cos2axdx +2e-u la eY sm2uydy = 0
0 -u 0
(7.15-2)
Since
j
u e-x^2 cos2axdx = 2 {u e-x^2 cos2axdx
-u lo
equation (7.15-2) reduces to
lu e-x
2
dx - ea
2
1u e-x
2
cos 2ax dx + e-u
2
1a eY
2
sin 2uy dy = 0 (7.15-3)
We have
2 2 • 2 2
I l
e-u a I la
0
eY sm2uydy :::; e-u
0
eY dy
so the last term in (7.15-3) tends to zero as u --t oo. Also, as u --t oo
the first integral tends to %ft. Hence the integral in the middle term