1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1

34


so that


and

Note If 81 = Arg z1, 82 = Arg z2, then


Z1
Arg - = Argz1-Argz2+27rn(z1,z2)
Z2

where


Exercises 1.3


if - 7l" < Arg z 1 - Arg z2 :::; 7l"

if - 271" < Argz1 -Argz2:::; -7!"

if 7l" < Argz1 -Argz2 < 27!"



  1. Represent geometrically the following complex numbers.
    (a) 3i (b) -7
    (c)3+i (d)l-i
    (e) -J3 + i (f) % + %J3i


Chapter 1


  1. Write the following complex numbers in polar form and also m
    exponential form.
    (a)l+i (b)-5
    (c) -i (d) -^1 / 2 - %J3i
    (e) -3 + 3i (f) (1 + -15) + V~~o---2-V5-5i

  2. Write the following numbers in binomial form.


(a) 3( cos 7l" + i sin 7l") (b) 4 (cos

3
; + i sin

3
; )

(c) v2(cos i +isin i) (d) 2ei7T:/^2
,(e) 5J2ei37T:/4 (f) 4e-i57T:/6


  1. Perform the indicated operations.


()5( a cos 3 7l" + i •• sm 71") 3 x 2 ( cos '2 7l" + i •• sm '2 71")


(b) (^4) ( cos '6 7l" + sm • 7l" '6 ) x 3 ( cos 571".. 571" )
6



  • ism 6
    ()4( c cos "3 7l" + i •• sm "3 71") + 2 ( cos 7l" •• 71")
    4

  • i sm
    4
    ( d) 20 (cos
    5
    6
    7!" + i sin
    5


; ) + 8( cos 7l" + i sin 7l")


  1. Use the exponential form to perform the following operations.


(a) (V3-i)(l+i) (b) (1-iV3)^3

Free download pdf