488 Chapter^7
= J J(() d( + J hf(() d( (7.20-3)
((-z)^2 ((-z-h)((-z)^2
'Y 'Y
Since f is continuous on 'Y, there exists a constant M > 0, such that
IJ(()I :::; M for all ( E 'Y· Therefore
J
hf(()d( < lhlM L('Y) = 2lhlM L('Y)
((-z-h)((-z)^2 - (1/ 2 r)r^2 r^3
'Y
and we see that the last integral in (7.20-3) tends to zero as h ~ 0. Thus
lim [F(z + h) - F(z)]/h exists and equals J f( () d(/( ( - z)^2.
In the general case, we have, with the sa'fne notation as above,
Fn(z+h)-Fn(z)= J J(()d( -! J(()d(
((-z-h)n ((-z)n
'Y 'Y
= J cc -z r -cc -z - hr Jc
0
d(
((-z-h)n((-z)n
'Y
-j h[(( -z)n-^1 + (( -z)n-^2 (( - z - h) +. · · + (( -z - hr-^1 ]
- ((-z-h)n((-z)n J(()d(
'Y
h
J [
=^1 + ... +^1 ' ] f.,, (1') d(
((-z-h)n((-z) ((-z-h)((-z)n
'Y
(7.20-4)
Hence
IFn(z + h) - Fn(z)J
[
1 1 1 ]
::=; lhlM (%r)nr + (%r)n-lr2 + ... + (%r)rn L('Y)
= lhlM^2 (^2 n - I) L( )
rn+l 'Y
so that IFn(z + h) - Fn(z)I ~ 0 as h ~ 0. This shows 'that Fn(z) is
continuous at z.
Now (7.20-4) can be written as
Fn(z + h) - Fn(z) = J J(() d(
h ((-z-h)n((-z)
'Y
+j J(()d( +···+] J(()d(
((-z - h)n-1(( - z)2 (( - z - h)(( -z)n
'Y 'Y