1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1

492 Chapter^7


within C. Also, 7r lies inside C. Hence, by using (7.21-2) with n = 3,
we get


J t~n: :~ = 2;i !"' ( 7f) = ~i ( - cos 7f) = ~i


c

Exercises 7.4


  1. Evaluate each of the following integrals.


( )
J

a z4 + ( z2 + .)3z +^1 d C· =^2 it^0 < t <^2
z-z^3 z,. z e , _ _ 7f
C'

J


e2z
(b) -dz 5 ' C: z = eit '^0 - < t < - 27f
z

a

(
zs
(c) j (z - l) 6 dz, C: z = 2eit, 0 ::=; t ::=; 67f
c
(d) j r cosh4z z ·
3 dz, C: z = e-•t,^0 ::=; t ::=; 47r
c

J


sinz it
( e) ( z 2 +
1
) 2 dz, C: z = 1 + 2e , 0 ::=; t ::=; 27f
c

2. Let f be continuous along the rectifiable arc 'Y, and let zo, z1 be two

points in one of the regions R determined by 1*. Let

F(z) = J J(()d(


(-z
'Y
for z E R, and define

I J f(()d(
F (z1,zo) = ((-zi)(( _ zo)
'Y
to be the mixed derivative of Fat the pair z 0 ,z 1 • Prove that:
(a) F(z1) - F(zo) = (z1 - zo)F'(z1, zo)
(b) F'(zo) = lim F'(z1,zo)
z1 --+-zo


  1. Evaluate


J


JdzJ

Jz-aJ^4

c
where C: z = reit, 0 :::; t :::; 211-, and JaJ i= r.
Free download pdf