1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1
Integration 505

(

( z( )
= ( - z + R^2 - z( d1/J

(


( z )
= (-z + (-z d1f-i
R2 -r2
= I( - zl2 d1/J
so that (7.28-12) becomes

u(rei^9 ) = R2 - r212... · u(Rei.P) ---d1/J
27r a IC -zl2
From Cauchy's formula for the upper half-plane (Exercises 7.3, problem
12) we can derive, in a similar fashion, Poisson's formulas for that region.

Corollary 7.19 If f = u +iv is analytic on Imz 2 0 and such that


lf(z)j < Alzl-m(A > 0, m > 0), then

for y = Im z > 0.

Proof We have

u ( x,y ) = -^1 1+= yu(t, I 0) 12 d t
7r -oo t - z

v ( x,y ) = -^1 1+= (x -I t)u(t, 12 0) d t
7r -oo t - z

f(z) = ~ 1+= f(t)dt
27ri -oo t - z

for Imz > 0. Also,


0 = ~ 1+= f(t) ~t
27ri -oo t - z

(7.28-14)

(7.28-15)

(7.28-16)

Hence, by subtracting, then adding, (7.28-15) and (7.28-16), we get

.f(z) = ~ 1+= (-


1




    • ~) f(t)dt
      27ri -oo t - z t - z




= .!. j+oo yj(t) dt

7r -oo it -zl2 (7.28-17)


f(z) = -.^1 1+= ( -^1 + -_ 1 ) f(t) dt
27ri -oo t - z t - z

= 2-1+= (t - x )f(t) dt
7ri _ 00 jt - zl^2
(7.28-18)
Free download pdf