518 Chapter 7
- A. L. Cauchy, Memoire sur les integrales definies prises entre des limites imag-
inaires, Bure Freres, Paris, 1825; reprinted in Bull. Sci. Math., 7 ((1874),
265-304; 8 (1875), 43-55, 148-159. - A. L. Cauchy, C. R. Acad. Sci. Paris (1844), 1377-1384.
- A. L. Cauchy, C. R. Acad. Sci. Paris (1846), 251-255 and 689-704.
- J. D. Dixon, A brief proof of Cauchy's integral theorem, Proc. Amer. Math.
Soc., 29 (1971), 625-626. - W. F. Eberlein, The Gauss-Green and Cauchy integral theorem, Amer. Math.
Monthly, 82 (1975), 625-629. - R. E. Edwards, Paths in Complex Analysis, Notes on Pure Mathematics 4,
Department of Mathematics Australian National University, Canberra, 1969. - Ch. Fefferman, An easy proof of the fundamental theorem of algebra, Amer.
Math. Monthly, 74 (1967), 854-855. - M. 0. Gonzalez, Some topics on differentiation and integration of functions
of a complex variable, Rev. Mat. Fis. Teor. Tucuman (Argentina), 19 (1969),
91-104. - G. Green, Essay on the Application of Mathematical Analysis to the Theory
of Electricity and Magnetism, Nottingham, 1828, - E. Goursat, Sur la definition generale des fonctions analytiques d'apres
Cauchy, Trans. Amer. Math. Soc., 1 (1900), 14-16. - E. R. Hedrick, Nonanalytic functions of a complex variable, Bull. Amer. Math.
Soc., 39 (1933), 75-96.
- F. Kiser, Nonanalytic solutions of differential equations, University of
Alabama Ph.D. dissertation, 1971.
- F. Kiser, Nonanalytic solutions of differential equations, University of
- J. D. Mancill, Plane areas by complex integration, Amer. Math. Monthly,
58 (1951), 232-238. - J.E. Marsden, Basic Complex Analysis, W. H. Freeman, San Francisco, 1973.
- L. M. Milne-Thomson, Theoretical Hydrodynamics, 4th ed., Macmillan, New
York, 1960. - S. Minsker, A familiar combinatorial identity proved by complex analysis,
Amer. Math. Monthly, 80 (1973), 1051. - G. Morera, Un teorema fondamentale nella teoria delle funzioni di una
variabile complessa, Rend. 1st. Lombardo, 19 (1886), 304-307. - M. H. A. Newman, Elements of the Topology of Plane Sets of Points, 2nd ed.,
Cambridge University Press, Cambridge, 1951.