1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1

518 Chapter 7



  1. A. L. Cauchy, Memoire sur les integrales definies prises entre des limites imag-
    inaires, Bure Freres, Paris, 1825; reprinted in Bull. Sci. Math., 7 ((1874),
    265-304; 8 (1875), 43-55, 148-159.

  2. A. L. Cauchy, C. R. Acad. Sci. Paris (1844), 1377-1384.

  3. A. L. Cauchy, C. R. Acad. Sci. Paris (1846), 251-255 and 689-704.

  4. J. D. Dixon, A brief proof of Cauchy's integral theorem, Proc. Amer. Math.
    Soc., 29 (1971), 625-626.

  5. W. F. Eberlein, The Gauss-Green and Cauchy integral theorem, Amer. Math.
    Monthly, 82 (1975), 625-629.

  6. R. E. Edwards, Paths in Complex Analysis, Notes on Pure Mathematics 4,
    Department of Mathematics Australian National University, Canberra, 1969.

  7. Ch. Fefferman, An easy proof of the fundamental theorem of algebra, Amer.
    Math. Monthly, 74 (1967), 854-855.

  8. M. 0. Gonzalez, Some topics on differentiation and integration of functions
    of a complex variable, Rev. Mat. Fis. Teor. Tucuman (Argentina), 19 (1969),
    91-104.

  9. G. Green, Essay on the Application of Mathematical Analysis to the Theory
    of Electricity and Magnetism, Nottingham, 1828,

  10. E. Goursat, Sur la definition generale des fonctions analytiques d'apres
    Cauchy, Trans. Amer. Math. Soc., 1 (1900), 14-16.

  11. E. R. Hedrick, Nonanalytic functions of a complex variable, Bull. Amer. Math.
    Soc., 39 (1933), 75-96.



    1. F. Kiser, Nonanalytic solutions of differential equations, University of
      Alabama Ph.D. dissertation, 1971.



  12. J. D. Mancill, Plane areas by complex integration, Amer. Math. Monthly,
    58 (1951), 232-238.

  13. J.E. Marsden, Basic Complex Analysis, W. H. Freeman, San Francisco, 1973.

  14. L. M. Milne-Thomson, Theoretical Hydrodynamics, 4th ed., Macmillan, New
    York, 1960.

  15. S. Minsker, A familiar combinatorial identity proved by complex analysis,
    Amer. Math. Monthly, 80 (1973), 1051.

  16. G. Morera, Un teorema fondamentale nella teoria delle funzioni di una
    variabile complessa, Rend. 1st. Lombardo, 19 (1886), 304-307.

  17. M. H. A. Newman, Elements of the Topology of Plane Sets of Points, 2nd ed.,
    Cambridge University Press, Cambridge, 1951.

Free download pdf