600
Now
1
z-2
1 1 oo 2n-l
-; 1 - 2; z = 'E ---;-;;-
n=l
valid for 12/zl < ll, or lzl > 2, and
1 1 1 00 Zn
4 - z = 4 1 - z/4 = L 4n+i
n=O
Chapter 8
(8.18-16)
(8.18-17)
valid for lz/41 < 1, or lzl < 4. Hence combining (8.18-16) and (8.18-17),
we obtain
1 oo 2n-l 1 oo Zn
f(z) = 2 L ---;-;;-+ 2 L 4n+1
n=l n=O
which converges for 2 < lzl < 4.
(b) We_ have
1 1 1 00 zn
z - 2 = - 2 1 - z 12 = - 'E 2n+1
n=O
(8.18-18)
valid for lz/21 < 1, or lzl < 2. Hence combining (8.18-17) and (8.18-18),
we obtain
1 oo Zn 1 oo Zn oo 1 - 2n+l
J(z) = -2 L 2n+1 + 2 L 4n+i = L 22n+3 Zn
n=O n=O n=O
which converges for lzJ < 2.
(c) We have
1 1 1 oo 4n-l
4 - z .= --; 1-4/z = -'E ---;-;;-
n=l
(8.18-19)
valid for 14/zl < 1, or JzJ > 4. Hence combining (8.18-16) and (8.18-19),
we get
which converges for lzl > 4.
We wish to check the last result by applying formula (8.18-2) so as to
illustrate its use in this particular case. We have
Am=-1/1(1 - --+--1) --dt^1
27ri 2 t - 2 4 - t tm+l
r