1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1

632 Chapter^8


= (a)m+l + ~ (7)(a)m-k+1(b)k



  • ~ (k: 1 )(a)m-k+t(b)k + (b)m+t


= (a)m+i + L m ( m k +1) (a)m+t-k(b)k + (b)m+t
k=l
m+l ( + l)
= ~ m k (a)m+i-k(b)k

which shows that the formula: also holds for n = m + 1. Hence it is valid
for an arbitrary positive integer n.


Exercises 8.9



  1. Use the f-function to evaluate the following integrals.
    (a) lCXJ e-x


4
dx (b) 1CXJ xe-x

3
dx

(c) :lCXJ e-a2x2 dx (a> 0) o

(d) 1


1

xmln(~)n dx (m > -1,n > 0)


(e) 1CXJ e_xs1;-dx (f) 11 c:x r/3 dx



  1. Show that:


(a) [CXJ xne-a2x2 dx = r((n + 1)/2) (a> 0, n > -1)

h ~n+l
[CXJ xa r(a + 1)
(b) Jo ax dx = (lna)a+l (a > 1)
(c) r(2n+l) = 1·3·5···(2n-l)Vir= (2n-l)!!v;;rt
2 2n 2n


  1. Prove that I'(z + 1) = zr(z) by using Euler's formula (8.20-19).

  2. Prove that


B(a, b)I'(a + b + n) = t (~)r(a + n - k)I'(b + k)
k=O

tThe notation (2n -1 )!! = 1 · 3 · 5 · · · (2n -1) is called a semifactorfol. Similarly,
(2n)!! = 2 · 4 · 6···(2n).
Free download pdf