1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1
Sequences, Series, and Special Functions 633

when Re a, Re b # 0, -1, -2, ....


5. Show that r(z) = I'(z). Also, prove that

7r
r(z)r(-z) = --. -
ZS1Il7rZ
and deduce that

1r(iy)l
2
=. :
ysm 1rY


  1. From
    7r


r(z)I'(l - z) = -. -


SIU 'TrZ
show that

1r(%+iy)l

2
= cos ~ 1rY

and hence

y-+±oo lim r(1/2 + iy) =^0


  1. Show that


B-(n n) = J?fI'(n) = 21-2n B(n,1/2)
' 22n-1r(n + %)


  1. Prove the following.
    (a) B(z, ()B(z + (, w) = B((, w)B(( + w, z), z, (, w # 0, -1, -2, ...


(b) B(z, n + 1) = n!/(z)n+i, z # 0, -1, -2, ...



  1. Evaluate.
    (a) fl dx
    lo )1 - x^4


(b) fl dx


(c) 1


1

{!t2(1-t)dt

r12

(e) lo ~de


lo )1 - x^114
[1 x^4 dx
(d) lo (l+x)^9

r12

(f) lo (sin20)
1
1
4
d0


  1. Show that


(1 - tttz-l dt = n. ,


1


1 '
o z(z + 1) · · · (z + n)


  1. (a) Show that the length of the lemniscate


r^2 = a^2 cos20
is given by L = a0fI'(1/ 4 )/r(3/4) ~ 5.24a.
(b) Find the area bounded by the oval

(1 + x^2 )y^2 = 1 - x^2


Rez > 0
Free download pdf