Sequences, Series, and Special Functions 633
when Re a, Re b # 0, -1, -2, ....
5. Show that r(z) = I'(z). Also, prove that
7r
r(z)r(-z) = --. -
ZS1Il7rZ
and deduce that
1r(iy)l
2
=. :
ysm 1rY
- From
7r
r(z)I'(l - z) = -. -
SIU 'TrZ
show that
1r(%+iy)l
2
= cos ~ 1rY
and hence
y-+±oo lim r(1/2 + iy) =^0
- Show that
B-(n n) = J?fI'(n) = 21-2n B(n,1/2)
' 22n-1r(n + %)
- Prove the following.
(a) B(z, ()B(z + (, w) = B((, w)B(( + w, z), z, (, w # 0, -1, -2, ...
(b) B(z, n + 1) = n!/(z)n+i, z # 0, -1, -2, ...
- Evaluate.
(a) fl dx
lo )1 - x^4
(b) fl dx
(c) 1
1
{!t2(1-t)dt
r12
(e) lo ~de
lo )1 - x^114
[1 x^4 dx
(d) lo (l+x)^9
r12
(f) lo (sin20)
1
1
4
d0
- Show that
(1 - tttz-l dt = n. ,
1
1 '
o z(z + 1) · · · (z + n)
- (a) Show that the length of the lemniscate
r^2 = a^2 cos20
is given by L = a0fI'(1/ 4 )/r(3/4) ~ 5.24a.
(b) Find the area bounded by the oval
(1 + x^2 )y^2 = 1 - x^2