634 Chapters
- Show that
{
0
(^1) xn dx Vi I'((n + 1)/2)
lo Vl=X2 = 2 r((n/2) + 1)
_ n!! 2
{
(n-1)!! '.'.:.
if n > 0 is even
- (n -1)!!
n!!
if n > 0 is odd
- Show that
7r/2 7r/2 " 2
{
(n-l)!!rr
f sinn () d() = f cosn () d() = ( : .. )II
lo lo n 1 ..
n!!
- Show that
ifn>Oiseven
if n > 0 is odd
lb (x - a)P-^1 (b -x)q-l dx = (b - a)P+q-l B(p, q)
where a< bare real and Rep> 0, Req > O. Hint: Let x-a = (b-a)t.
- Show that
sinP () cosq d() = -^2 2
1
7r/^2 1 r( tl! )r( tl.!)
o 2 r(.e.p: +1)
(Rep> -l,Req > -1)
- Prove that
1
1
(1 -xP)l/q dx = fo\1 -xq)l/p dx
where p > O, q > 0.
- Prove the Dirichlet formula
J
r lj i-1 m-1 n-1 d d d albmcn r ( ~) r ( ~) r ( ~)
l. x y z x y z = ---pg;:-r ( 1 + .!!!. + 11 + l)
V p q r
where V is the volume bounded in the first octant by the coordinate
planes and the surface
(~Y +(tY+(~r =l
and the parameters a, b, c, l, m, n, p, q, r are real and positive. Use the
Dirichlet formula to find the volume, centroid, and moments of inertia
with respect to the coordinate planes of an octant of the ellipsoid
x2 y2 z2
a2 + b2 + c2 = 1