1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1

634 Chapters



  1. Show that


{
0

(^1) xn dx Vi I'((n + 1)/2)
lo Vl=X2 = 2 r((n/2) + 1)
_ n!! 2
{


(n-1)!! '.'.:.

if n > 0 is even


  • (n -1)!!
    n!!


if n > 0 is odd


  1. Show that


7r/2 7r/2 " 2
{

(n-l)!!rr


f sinn () d() = f cosn () d() = ( : .. )II
lo lo n 1 ..
n!!


  1. Show that


ifn>Oiseven

if n > 0 is odd

lb (x - a)P-^1 (b -x)q-l dx = (b - a)P+q-l B(p, q)


where a< bare real and Rep> 0, Req > O. Hint: Let x-a = (b-a)t.



  1. Show that


sinP () cosq d() = -^2 2


1


7r/^2 1 r( tl! )r( tl.!)


o 2 r(.e.p: +1)


(Rep> -l,Req > -1)



  1. Prove that


1


1
(1 -xP)l/q dx = fo\1 -xq)l/p dx

where p > O, q > 0.


  1. Prove the Dirichlet formula


J


r lj i-1 m-1 n-1 d d d albmcn r ( ~) r ( ~) r ( ~)
l. x y z x y z = ---pg;:-r ( 1 + .!!!. + 11 + l)
V p q r
where V is the volume bounded in the first octant by the coordinate
planes and the surface

(~Y +(tY+(~r =l
and the parameters a, b, c, l, m, n, p, q, r are real and positive. Use the
Dirichlet formula to find the volume, centroid, and moments of inertia
with respect to the coordinate planes of an octant of the ellipsoid
x2 y2 z2
a2 + b2 + c2 = 1
Free download pdf