1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1
Singularities/Residues/Applications

Exercises 9.3



  1. Show that j ( 3 ~


2
~

2
1 ~~~ ~ 4 ) = ~ 7ri, c+: z = 3eit, O $ t $ 271".
c+

J


(3z^7 + 4) dz. + it



  1. Show that zB _
    1
    = 6m, C : z = 2e , 0 $ t $ 271".
    c+


679

3 Sh h t

J


. ow t a sin z d '(. h^1. ) c+ it

z^3 +z^2 +z+^1 z = 7rZ sm - sin 1 , : z = 2e
c+

0 < t < 271".



  1. Sh:w t~at j tan7rzdz = -4ni, c+: z = neit, O $ t $ 271", (n > 0).
    c+

  2. Show that j .dhz {-
    4
    7l"i n odd c+: z = (n + 1/ 2 )7reit, o $ t $
    sm z O neven
    c+


271" (n > 0).


  1. Show that = -^1 / 2 7ri, c-: z = e-it, 0 $ t $ 271".


J


ezdz
z^2 (z^2 - 4)

c-



  1. Show that j
    c+


Z^2 + Z -2 d -^17 7l"Z. c+.


( z - 1 )( z - 4) z - 24 ' · z -^2 e ' it^0 < t <^2 71" ·



  1. Let P(z) = aozn +···+an (ao =/: 0) and Q(z) = bozm + · · · + bm
    (bo =f=. 0) be polynomials prime to each other, and let C be a simple
    closed contour enclosing all zeros of Q(z). Prove that


--dz= bo


J


P(z) {
2
7riao if m - n = 1

c+ Q(z) 0 if m - n;::: 2

9. Let f be analytic, except for a finite number of isolated singularities,


in a region G that contains a deleted neighborhood of oo. Consider a
simple closed contour C in G not passing through any singularity off

and outside of which f is analytic except for the singularities bi, b 2 ,


... , bm (bk=/: oo). Prove that


j f(z)dz=27riE!t~f+211"i!~f


c- k=l.



  1. Evaluate: j [sin(a/z)/(z^2 + b^2 )]dz, where a,b =f=. O, c+:


c+

0 $ t $ 271", 0 < r =/: !bl. Hint: Use the result in problem 9.

z = reit


'
Free download pdf