704 Chapter9get
[
00
sinx dx = [
00sinmu du= ~
lo x lo u 2
(9.11-28^1 )In particular, for m = 2 we have
or
[00sin2u du= 2 (
00sinucosu du= 71"
lo u lo u 2
1
00
sinucosu du= ~
0 u 4
Integration by parts of the last integral gives1
(^00) sin (^2) u 71"
--du= -
o u2 2
(9.11-29)
(9.11-30)
The result (9.11-28) can be derived from (9.11-18') by taking a= 1 and
letting b -+ 0. That this procedure is legitimate follows from
Ir
000
xsinx dx _ r00
sinx dxl =I r00-b
2
sinx d Ilo x^2 + b^2 lo x lo x(x^2 + b^2 ) x
< loo b2 dx
o x2 + b2= ~b
2which tends to 0 as b -+ 0.
If m < 0, (9.11-28') gives
(00
sin mu du = - (00
sin lmlu du = - ~lo u lo u 2
Hence we haveor(
00
sin mu du =lo u
ifm > 0
ifm= 0
ifm < 0
{1 ifm>O
·'·( ) 21
00
rm= - ---sin mu d u= 0 ifm=O
71" 0 u-1 ifm<O
This function is called Dirichlet's discontinuous function.