1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1
704 Chapter9

get


[
00
sinx dx = [
00

sinmu du= ~

lo x lo u 2

(9.11-28^1 )

In particular, for m = 2 we have


or


[

00

sin2u du= 2 (

00

sinucosu du= 71"

lo u lo u 2

1


00
sinucosu du= ~
0 u 4
Integration by parts of the last integral gives

1


(^00) sin (^2) u 71"
--du= -
o u2 2
(9.11-29)
(9.11-30)


The result (9.11-28) can be derived from (9.11-18') by taking a= 1 and

letting b -+ 0. That this procedure is legitimate follows from


I

r
0

00
xsinx dx _ r

00
sinx dxl =I r

00

-b

2
sinx d I

lo x^2 + b^2 lo x lo x(x^2 + b^2 ) x


< loo b2 dx
o x2 + b2

= ~b
2

which tends to 0 as b -+ 0.


If m < 0, (9.11-28') gives


(

00
sin mu du = - (

00
sin lmlu du = - ~

lo u lo u 2

Hence we have

or

(
00
sin mu du =

lo u

ifm > 0

ifm= 0


ifm < 0

{

1 ifm>O


·'·( ) 21


00
rm= - ---sin mu d u= 0 ifm=O
71" 0 u

-1 ifm<O


This function is called Dirichlet's discontinuous function.

Free download pdf