704 Chapter9
get
[
00
sinx dx = [
00
sinmu du= ~
lo x lo u 2
(9.11-28^1 )
In particular, for m = 2 we have
or
[
00
sin2u du= 2 (
00
sinucosu du= 71"
lo u lo u 2
1
00
sinucosu du= ~
0 u 4
Integration by parts of the last integral gives
1
(^00) sin (^2) u 71"
--du= -
o u2 2
(9.11-29)
(9.11-30)
The result (9.11-28) can be derived from (9.11-18') by taking a= 1 and
letting b -+ 0. That this procedure is legitimate follows from
I
r
0
00
xsinx dx _ r
00
sinx dxl =I r
00
-b
2
sinx d I
lo x^2 + b^2 lo x lo x(x^2 + b^2 ) x
< loo b2 dx
o x2 + b2
= ~b
2
which tends to 0 as b -+ 0.
If m < 0, (9.11-28') gives
(
00
sin mu du = - (
00
sin lmlu du = - ~
lo u lo u 2
Hence we have
or
(
00
sin mu du =
lo u
ifm > 0
ifm= 0
ifm < 0
{
1 ifm>O
·'·( ) 21
00
rm= - ---sin mu d u= 0 ifm=O
71" 0 u
-1 ifm<O
This function is called Dirichlet's discontinuous function.