1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1

712 Chapter9


and there are no poles outside the real axis. Hence (9.11-42) yields


'.. 100 xa dx 100 xa dx. a
(cos a7r + i sma7r) -b - + (PV) -b - = -i7rb
o +x o -x

from which we obtain


1


(^00) xa dx 100 xa dx
cosa7r -b-+ (PV) -b-= 0
o +x o -x
and


1


(^00) xa dx
sin a7r -b--= -7rba


o +x


Therefore,

1


(^00) xa dx -7rba
0 b + x = sin a7r
which is the same as (9.11-33), and


1


(^00) xa dx
(PV) -b - = 7rba cot a7r
0 -x


Exercises 9.6


Show that:

1


(^00) xa dx 7raba-l


1. ( b) 2 - • , -1 < a < 1, b > 0


0 x+ sma7r


1


00 xa dx 7rba-1


  1. 2 b 2 = 2 ( / 2 ), -1 < a < 1, b > 0
    0 x + cos a7r
    l^00 xa dx 7r{l - a)ba-^3


(^3) · lo (x (^2) + b 2 ) (^2). = 4cos(a7r/2) ' -l <a< (^3) • b > O
1
(^00) xa dx 7rba- (^2) 271"



  1. 3 b 3 =-
    3
    . [1+2cos-
    3


(a+l)],-l<a<2,b>O
0 x + sma7r

1


(^00) xa dx 7r sin a8



  1. 2
    2
    ()
    1
    = -.----. -
    8
    -, -1 <a< 1, -7r < () < 7r
    0 x + xcos + sma7r sm


1


(^00) xa dx 7r ba - ca



  1. ( b)( ) =. b ,-l<a<l,b>O,c>O,bfc
    0 x + x + c sm a7r - c
    loo Xa dx 7rba-3


(^7) · lo x (^4) +b (^4) = 4sin(a+l)7r/4' -l <a< (^3) ,b > O
1
(^00) xa dx 1 a-l 1 - cos a7r



  1. (PV) 2 b 2 = -
    2


7rb. , -1 < a< 1, b > O


0 x - s1na7r
Free download pdf