716 Chapter^9
The recursive formula (9.11-47) can be applied in particular to rational
functions f(x) = P(x)/Q(x), with P and Q prime to each other and the
degree of Q at least two units greater than the degree of P.
Examples 1. Toevaluatef 000 lnxdx/(x^2 +a^2 ),wherea>O. Heref(z)=
1/(z^2 + a^2 ), which satisfies conditions (2), (3) and (4). Since
Res logz = logia = lna + %i7r
z=ia z^2 + a^2 2ia 2ia
(9.11-48) yields
Hence
2 roo _lnxdx +i'lf' roo dx = !'.:.(lna+%i7r)
lo x2 + a2 lo x2 + a2 a
{^00 lnx dx
lo x2 + a2
{^00 dx
lo x2 + a2
71'
= -lna
2a
71'
2a
(9.11-50)
(9.11-51)
where the last integral can be evaluated by elementary means. For a = 1
the first integral gives
[
00
lnxdx = 0
Jo x^2 +1
- To evaluate f 0
00
(lnx)^2 dx/(x^2 + a^2 ), a> 0. Since
Res (log z )^2 = (logia )^2 = (ln a )^2 + i'lf' ln a - %Tr2
=~~+~ ~ ~
we get, from (9.11-49),
2
1
00
(lnx)2 dx. 1
00
lnx dx 21
00
~-'--+ 2rn - 7r dx
o x2 + a2 o x2 + a2 o x2 + a2
= !'.:. ((ln a)^2 + i'lf' ln a - ~ 71'^2 ] (9.11-52)
a 4
Hence,
2100 (lnx)2dx -11·2 roo dx = !'.:.[(lna)2 - !71'2]
o x2 + a2 lo x2 + a2 a 4
or,