718 Chapter9
1
r sinha(x + i7r) d J sinhaz d 1-R sinha(x + i7r) d
+ R sm. h( x + i7l". ) x + -.-h-sm z z + -r sm. h( x + i7l". ) x
-y-
1
° sinh a(-R + iy). d _
+. h( R. ) z y -^0
11' sm - + zy
(9.11-53)
But
J
R sinh ax dx = 2 {R sinh ax dx
-R sinhx } 0 sinhx
and for R > 1,
0 <, -1 sinha(±R+iy) I < sinhaR+sinay < ----sinhaR+l --7^0
- sinh(±R + iy) - sinhR - sin y - sinhR- 1
as R --+ oo, so that
ll
rr sinha(R+iy) 'd I sinhaR+l
.. zy< 71"--+0
0 smh(R + zy) - sinhR -1
as R --+ oo. Similarly,
Also,
so that
I
{o si~ha(-R+_iy! idyl--+ o'
lrr smh(-R + zy)
as R--+ oo
1
. (. ) sinh az sinh ia7l"
Im z - Z7l" ---= - -zsina7l"
z-+irr sinh z cosh i7l" -
(^1) Im. J -. sinh -h-az d z = z '( -7!" - 0 ) ( -isina7!" ) = -7l"sina7!"
r-+O SIU Z
-y-
by Lemma 9.4.
y
-RI
i'lT R+i'lT
\:: -r
-R - 0 R x
Fig. 9.23
(9.11-54)
(9.11-55)
(9.11-56)