730
while
lim J fo(z)dz = i7rVC
6-+0
'"Yo '+
lim J fo(z) dz= i7r(-VC)
6-+0
-rt
Chapter9
since limz-+O zf 0 (z) equals VG or -VG depending on whether z is re-
stricted to the lower or upper indentation. Thus if we let e -+ 0 in (9.11-65)
and combine similar terms, we get
~ ~ 2 [[' fo(x)& + l fo(x)&l + / fo(z)dz+ [ fo(z)dz
'"Yo+ '"Yo
Finally, letting 6 -+ 0, we find that t
l
b 1 7rB
(PV) -V Ax^2 + 2Bx + C dx = /7
a x v-A
(9.11-66)
EXERCISES 9.7
Show that:
1 {
00
lnx dx = ._ 7r^2 ../2
· lo x^4 +1 16
- f 00 (ln x )^2 dx = 37r^3 ../2
lo x^4 + 1 64
1
(^00) ln(x (^2) + 1)
*3. 2
1
dx = 7r ln 2, and deduce that
0 x +
r<l/2)7r r<l/2)7r
lo lnsinBdB =lo lncosBdB = -^1 / 2 7rln2
4
1
1
ln(x + l/x) d = ~ 1 2
- 2 1 x 2?Tn
0 x +
1
(^00) lnx dx 7r
- ·( 2 2 ) 2 = - 3 (Ina - 1), a > 0
0 x +a 4a
tThe results in formulas (9.11-64) and (9.11-66) are contained in a joint paper
by E. Badell and the author (1], published in 1942. Reproduced in part by V. I.
Smirnov (22] in 1957.