Singularities/Residues/ Applications 739
and on the horizontal sides y = ±m,
I I I
I sec 7rzl = :::; "nh :::; -;--h < O.I
V cos2 11"X + sinh2 7rm s1 7rm sm 71"
Hence, applying (9.I2-2), we find that
2n+d-IrE2n ~ k I
71" (2n)! = - k~oo (-I) -1 (k + l/2)2n+l
or
I I )2n+l (-I)n E2n ~ (-I)k
2 ( 2 71" (2n)! = f::o (2k + I)2n+l
I I
= I - 32n+i + 5 2n+l - · · · (9.I2-I5)
Recalling that Eo = I, E 2 = -I and E4 = 5 we get, for n = 0, n = I,
and n = 2, the series
71" I I I
4=I-3+5-7+··· (9.I2-I6)
71"^3 I I I
32 = I - 3 3 + 5 3 - 73 + ... (9.I2-I 7)
57!"^5 I I I
I536 = I - 3 5 + 5 5 - 7s + · · · (9.I2-I8)
Exercises 9.8
Show that:
I I^00 I.
- 27rtan 271"Z = -2z L z2 -(2n - I)2' z i' ±I, ±3, ...
n=l
I I ·L
00
2n-I
- -7!"SeC-71"Z=2 (-It 2 ( )2'z#±I,±3, ...
(^2 2) n=l z - 2n - I
I I 4 00 I
- tan -
2
11"Z +sec - 2 7l"Z = - -71" ~ L.,; z+ ( -Inn-) ( 2 I), z #I, -3, 5, ...
m=l
- 71" cot h 11"Z = - + ·I~ 2z L.,; I _/..".
2 2 , z r ±i, ±2i, ...
z n=l z + n
z I ~ 2z^2.
- ez - I = I - 2 z + L.,; z2 + 4n271"2 ' z i' 2n7ri
n=l
11"^6 I I I