1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1

Index


Continuity of the first derivative,
385-387
Convergence:
absolute, 186, 201
almost uniform, 522
conditional, 189
of integrals, 687
pointwise, 197, 200
of sequences, 111-112, 174-
175
of series, 185
Correspondence (see Mapping)
Critical algebraic points, 287
Curve(s), 157-158, 511
Cycle, 160

D'Alembert test, 194
Darboux's inequality, 423
Degree of a polynomial, 260
De Moivre theorem, 43
De Morgan's laws, 80
Derivative:
angular, 310
directional, 311, 338-339,
341-349
for the inverse function,
362
transformations induced
by, 379-380
of an integral, 499-501
logarithmic, 7 40
mean, 341, 355
ordinary, 308
partial, 326, 328-331
phase (or areolar), 341
second directional, 354
rectilinear, 354
Deviation from analyticity, 342
Diameter of a set, 98
Differentiability of u(x, y),
313-316
Differentiable function, 309


761

Differential:
invariant, 246
oper<!ctors~326', 328-331, 338
total,"'!313-'--::S14, 326, 343
Differentiatioh:
rules, 312-313
of sequences and series,
·523-525
Dirichlet's
discontinuous function, 704
test, 564
Discrete Green theorem, 448-449
Distance, 63, 65, 91-92, 98,
243-246
Distortion angle, 343, 346,
371-377
Domain (see Region)
Domain of existence of a
function, 3
Duplication formula for I'(z),
616, 620-621

Entire (or integral) function, 309
Equation of continuity, 512
Equivalence relation, 77
Equivalent infinitely large
functions, 142
infinitesimals, 139-140
Essential singularity, 653-654,
661
Euclidean geometry, 241
Euler (or Gauss) formula,
622-623
Eulerian integrals, 613
Euler numbers, 548-549, 738-739
Evaluation of real improper
integrals, 687-732
Exponential function, 272-274
Exterior:
of a curve, 158

point of domain of f, 653


of a set, 96
Free download pdf