1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1
764

Metric spaces, 90-93
Minimum modulus theorem, 384,
577, 580
Mobius transformation (see
Bilinear function)
Module of periodicity, 469
Modulus:
of a complex number, 19
of a quaternion, 72
Monogenic function, 309
Morera's theorem, 495
Multiplier of the bilinear
transformation, 226

Neighborhoods, 93-95
Non-Euclidean geometry, 241-
248
Notations, 6

Open covering, 106
Operations with power series,
53'7-545
Operator, 3
Order:
of a pole, 565, 654
of a rational function, 265
of a zero, 565
Orientation of a circle, 240-241

Parallel lines, 242-243
Parseval's identity, 552
Path of integration, 414
Period:
of a function, 273, 606
of an integral, 469
Periodic functions, simply,
272-276, 605-606
Picard's theorem, 556-557, 660
Plane:
cut, 88
punctured, 88
Plemelj formulas, 494-495


Index

Poincare's
differential invariant, 246
model of Lobachevsky
geometry, 241-248
Point:
of accumulation, 97
of contact, 97
isolated, 97
Point arc, 151
Poisson's
formulas, 504-506
summation formula, 613
Pole, 264, 654
Power series, 203-210
operations with, 537-545
radius of convergence, 205-
208, 529
reversion, 543-544, 752-754
Power set, 3
Primitives of an analytic
function, 467-469
Principal:
branch of inverse circular
functions, 301, 304-305
branch of inverse hyperbolic
functions, 301-302, 305
directions, 373, 377, 379
logarithm, 55, 297
nth root, 47
part of .6.u, 313
part of a function at an
isolated essential
singularity, 654
part of a meromorphic
function at a pole, 654
region, 88
value of arg z, 29
value of zo:, 56, 299
Ptolemy's theorem, 250

Quaternions, 71-72

1835 26


Free download pdf