766
[Set]
equivalent, 77
finite, 77
indexed collection, 77
infinite, 77
open, 95
perfect, 98
separated, 100
starlike, 85
universal, 2
Singularity:
cluster point, 661
essential, 654
isolated, 653
nonisol.ated, 653
pole of order m
removable, 499
Sink, 513
Source, 513
Spaces:
compact, 106
complete, 115
connected, 101
of continuous functions, 92-93
discrete, 121
Euclidean, 92
Frechet (see T 1 -space)
Hausdorff (see Trspace)
linear ~r vector space, 18
locally connected, 105
metric, 90-93
pseudo-Euclidean, 92
regular, 122
separable, 98
sequentially compact, 112
topological, 120
T; (i = 0, 1, 2, 3, 4), 122
Stirling's formula, 625
Stolz angle, 557
Summation of. series by using
residues, 732- 739
Symbolic method, 545-549
Index
Symmetry principle, 237
Symmetry with respect to a
circle, 236-239
Tauberian condition, 562
Tauber's theorem, 562-563
Taylor series:.
for analytic functions, 529-531
for nonanalytic fu:qctions,
522-555
Ternary semigroup,-251
Tissot's theorem, 377.:_379
Topological properties. of analytic
functions, 385:
Topologies, 121.^1
Total boundary, 416 '
Transformations, 3, 229-234
Triangle inequality, 91
. I
Uniform:
continuity, 148 ,
convergence, 197, 200-201 I
Variation, 417
bounded, 417
total, 417
Velocity:
of a fluid, 508
potential, 511
Vorticity; 513
Wallis formula, 6,24
Weierstrass doul?le series
theorem,: 540-542
M-test, 201-202
Winding number, 154..;.157
analytical represe;n~:ation,
458-460
Zeros:. ,
of analytic fu~ction~, 568-569