Science - USA (2019-08-30)

(Antfer) #1

In vivo T cell proliferation and
TFHdifferentiation


To assess proliferation, CD4+T cells from OT-II
Dock8−/−(CD45.2+)orOT-IIWT(CD45.1.2+)
mice were prepared from the spleen and lymph
nodes by negative selection using the EasySep
CD4 T Cell Isolation kit (STEMCELL Technolo-
gies) according to the manufacturer’s instruc-
tions. For T cell proliferation assays, OTII cells
were labeled with 1mMcarboxyfluoresceindi-
acetate succinimidyl ester (CFSE) before transfer
in to CD45.1+recipient mice and CFSE dilution
was used to assess proliferation. For TFHcell
identification, OT-II cells were not labeled with
CFSE and were gated using CD44+CXCR5+PD1+.
A total of 2 × 10^5 purified OTII cells were
transferred into mice by retro-orbital injection.
Mice were intranasally immunized 24 hours
later with 10mg of NP-OVA (Biosearch) and 2mg
of LPS (Sigma). MedLNs were harvested 3 days
(for T cell proliferation) or 6 days after immu-
nization (for TFHcell analyses). Single–cell sus-
pensions were prepared, stained, and then
analyzed on an LSRII flow cytometer (BD
Biosciences).


Statistical analysis


ANOVA or Student’sttest were performed on
normally distributed data (analyzed by Shapiro-
Wilk test). Mann-WhitneyUor Kruskal-Wallis
Htests were used otherwise. AP-value of <0.05
was considered significant. Data were analyzed
with Prism 7 (GraphPad Software).


REFERENCES AND NOTES



  1. H. C. Oettgen, R. S. Geha, IgE regulation and roles in asthma
    pathogenesis.J. Allergy Clin. Immunol. 107 , 429–441 (2001).
    doi:10.1067/mai.2001.113759; pmid: 11240941

  2. H. Mita, H. Yasueda, K. Akiyama, Affinity of IgE antibody to
    antigen influences allergen-induced histamine release.
    Clin. Exp. Allergy 30 , 1583–1589 (2000). doi:10.1046/
    j.1365-2222.2000.00921.x; pmid: 11069567

  3. R. Suzukiet al., Molecular editing of cellular responses by the
    high-affinity receptor for IgE.Science 343 , 1021–1025 (2014).
    doi:10.1126/science.1246976; pmid: 24505132

  4. J. Wanget al., Correlation of IgE/IgG4 milk epitopes and
    affinity of milk-specific IgE antibodies with different
    phenotypes of clinical milk allergy.J. Allergy Clin. Immunol.
    125 , 695–702.e6 (2010). doi:10.1016/j.jaci.2009.12.017;
    pmid: 20226304

  5. J. S. Heet al., IgG1 memory B cells keep the memory of IgE
    responses.Nat. Commun. 8 , 641 (2017). doi:10.1038/
    s41467-017-00723-0; pmid: 28935935

  6. H. Xiong, J. Dolpady, M. Wabl, M. A. Curotto de Lafaille,
    J. J. Lafaille, Sequential class switching is required for the
    generation of high affinity IgE antibodies.J. Exp. Med. 209 ,
    353 – 364 (2012). doi:10.1084/jem.20111941; pmid: 22249450

  7. K. Shimodaet al., Lack of IL-4-induced Th2 response and IgE
    class switching in mice with disrupted Stat6 gene.Nature 380 ,
    630 – 633 (1996). doi:10.1038/380630a0; pmid: 8602264

  8. K. Takedaet al., Essential role of Stat6 in IL-4 signalling.
    Nature 380 , 627–630 (1996). doi:10.1038/380627a0;
    pmid: 8602263

  9. J. Zhuet al., Conditional deletion of Gata3 shows its essential
    function in TH1-TH2 responses.Nat. Immunol. 5 , 1157– 1165
    (2004). doi:10.1038/ni1128; pmid: 15475959

  10. T. Kobayashi, K. Iijima, A. L. Dent, H. Kita, Follicular helper
    T cells mediate IgE antibody response to airborne allergens.
    J. Allergy Clin. Immunol. 139 , 300–313.e7 (2017). doi:10.1016/
    j.jaci.2016.04.021; pmid: 27325434

  11. A. P. Meli, G. Fontés, C. Leung Soo, I. L. King, T follicular helper
    cell-derived IL-4 is required for IgE production during intestinal
    helminth infection.J. Immunol. 199 , 244–252 (2017).
    doi:10.4049/jimmunol.1700141; pmid: 28533444
    12. A. Noble, J. Zhao, Follicular helper T cells are responsible for
    IgE responses to Der p 1 following house dust mite
    sensitization in mice.Clin. Exp. Allergy 46 , 1075–1082 (2016).
    doi:10.1111/cea.12750; pmid: 27138589
    13. J. J. Dolenceet al., Airway exposure initiates peanut allergy by
    involving the IL-1 pathway and T follicular helper cells in mice.
    J. Allergy Clin. Immunol. 142 ,1144–1158.e8 (2018).
    doi:10.1016/j.jaci.2017.11.020; pmid: 29247716
    14. H. E. Lianget al., Divergent expression patterns of IL-4 and
    IL-13 define unique functions in allergic immunity.
    Nat. Immunol. 13 ,58–66 (2012). doi:10.1038/ni.2182;
    pmid: 22138715
    15. R. Moritaet al., Human blood CXCR5+CD4+T cells are
    counterparts of T follicular cells and contain specific subsets
    that differentially support antibody secretion.Immunity 34 ,
    108 – 121 (2011). doi:10.1016/j.immuni.2010.12.012;
    pmid: 21215658
    16. Y. Haradaet al., The 3′enhancer CNS2 is a critical regulator of
    interleukin-4-mediated humoral immunity in follicular helper
    T cells.Immunity 36 , 188–200 (2012). doi:10.1016/
    j.immuni.2012.02.002; pmid: 22365664
    17. A. Sahooet al., Batf is important for IL-4 expression in
    T follicular helper cells.Nat. Commun. 6 , 7997 (2015).
    doi:10.1038/ncomms8997; pmid: 26278622
    18. P. Vijayanandet al., Interleukin-4 production by follicular
    helper T cells requires the conserved Il4 enhancer
    hypersensitivity site V.Immunity 36 , 175–187 (2012).
    doi:10.1016/j.immuni.2011.12.014; pmid: 22326582
    19. A. Williamset al., Hypersensitive site 6 of the Th2 locus control
    region is essential for Th2 cytokine expression.Proc. Natl.
    Acad. Sci. U.S.A. 110 , 6955–6960 (2013). doi:10.1073/
    pnas.1304720110; pmid: 23569250
    20. J. Zhu, T helper 2 (Th2) cell differentiation, type 2 innate
    lymphoid cell (ILC2) development and regulation of
    interleukin-4 (IL-4) and IL-13 production.Cytokine 75 ,
    14 – 24 (2015). doi:10.1016/j.cyto.2015.05.010;
    pmid: 26044597
    21. J. S. Weinsteinet al., TFH cells progressively differentiate to
    regulate the germinal center response.Nat. Immunol. 17 ,
    1197 – 1205 (2016). doi:10.1038/ni.3554;pmid: 27573866
    22. I. Yusufet al., Germinal center T follicular helper cell IL-4
    production is dependent on signaling lymphocytic activation
    molecule receptor (CD150).J. Immunol. 185 , 190–202 (2010).
    doi: 10 .4049/jimmunol.0903505; pmid: 20525889
    23. X. Liuet al., Bcl6 expression specifies the T follicular helper cell
    program in vivo.J. Exp. Med. 209 , 1841–1852 (2012).
    doi:10.1084/jem.20120219; pmid: 22987803
    24. H. C. Su, H. Jing, Q. Zhang, DOCK8 deficiency.Ann.
    N. Y. Acad. Sci. 1246 ,26–33 (2011). doi:10.1111/
    j.1749-6632.2011.06295.x; pmid: 22236427
    25. H. C. Su, H. Jing, P. Angelus, A. F. Freeman, Insights into
    immunity from clinical and basic science studies of DOCK8
    immunodeficiency syndrome.Immunol. Rev. 287 ,9–19 (2019).
    doi:10.1111/imr.12723; pmid: 30565250
    26. J. K. Krishnaswamyet al., Migratory CD11b+conventional
    dendritic cells induce T follicular helper cell-dependent
    antibody responses.Sci. Immunol. 2 , eaam9169 (2017).
    doi:10.1126/sciimmunol.aam9169; pmid: 29196450
    27. K. L. Randallet al., Dock8 mutations cripple B cell
    immunological synapses, germinal centers and long-lived
    antibody production.Nat. Immunol. 10 , 1283–1291 (2009).
    doi:10.1038/ni.1820; pmid: 19898472
    28. F. D. Finkelman, M. E. Rothenberg, E. B. Brandt, S. C. Morris,
    R. T. Strait, Molecular mechanisms of anaphylaxis: Lessons
    from studies with murine models.J. Allergy Clin. Immunol. 115 ,
    449 – 457 (2005). doi:10.1016/j.jaci.2004.12.1125;
    pmid: 15753886
    29. E. Janssenet al., Dedicator of cytokinesis 8-deficient patients
    have a breakdown in peripheral B-cell tolerance and
    defective regulatory T cells.J. Allergy Clin. Immunol. 134 ,
    1365 – 1374 (2014). doi:10.1016/j.jaci.2014.07.042;
    pmid: 25218284
    30. A. K. Singhet al., DOCK8 regulates fitness and function of
    regulatory T cells through modulation of IL-2 signaling.
    JCI Insight 2 , e94275 (2017). doi:10.1172/jci.insight.94275;
    pmid: 28978795
    31. D. Zotoset al., IL-21 regulates germinal center B cell
    differentiation and proliferation through a B cell-intrinsic
    mechanism.J. Exp. Med. 207 , 365–378 (2010). doi:10.1084/
    jem.20091777; pmid: 20142430
    32. K. Ozakiet al., A critical role for IL-21 in regulating
    immunoglobulin production.Science 298 , 1630–1634 (2002).
    doi:10.1126/science.1077002; pmid: 12446913
    33. A. Sutoet al., Interleukin 21 prevents antigen-induced IgE
    production by inhibiting germ line Cetranscription of
    IL-4-stimulated B cells.Blood 100 , 4565–4573 (2002).
    doi:10.1182/blood-2002-04-1115;pmid: 12393685
    34. N. Woodet al., IL-21 effects on human IgE production in
    response to IL-4 or IL-13.Cell. Immunol. 231 , 133–145 (2004).
    doi:10.1016/j.cellimm.2005.01.001; pmid: 15919378
    35. K. Takatsu, T. Kouro, Y. Nagai, Interleukin 5 in the link between
    the innate and acquired immune response.Adv. Immunol. 101 ,
    191 – 236 (2009). doi:10.1016/S0065-2776(08)01006-7;
    pmid: 19231596
    36. M. Kubo, T follicular helper and TH2 cells in allergic responses.
    Allergol. Int. 66 , 377–381 (2017). doi:10.1016/
    j.alit.2017.04.006; pmid: 28499720
    37. M. Mohrs, K. Shinkai, K. Mohrs, R. M. Locksley, Analysis of type
    2 immunity in vivo with a bicistronic IL-4 reporter.Immunity 15 ,
    303 – 311 (2001). doi:10.1016/S1074-7613(01)00186-8;
    pmid: 11520464
    38. N. Debeuf, E. Haspeslagh, M. van Helden, H. Hammad,
    B. N. Lambrecht, Mouse models of asthma.Curr. Protoc.
    Mouse Biol. 6 , 169–184 (2016). pmid: 27248433
    39. X. M. Liet al., A murine model of peanut anaphylaxis: T- and
    B-cell responses to a major peanut allergen mimic human
    responses.J. Allergy Clin. Immunol. 106 , 150–158 (2000).
    doi:10.1067/mai.2000.107395; pmid: 10887318
    40. D. Chianget al., Single-cell profiling of peanut-responsive
    T cells in patients with peanut allergy reveals heterogeneous
    effector TH2 subsets.J. Allergy Clin. Immunol. 141 , 2107– 2120
    (2018). doi:10.1016/j.jaci.2017.11.060; pmid: 29408715
    41. Y. Wanget al., IgE sequences in individuals living in an area of
    endemic parasitism show little mutational evidence of
    antigen selection.Scand. J. Immunol. 73 , 496–504 (2011).
    doi:10.1111/j.1365-3083.2011.02525.x; pmid: 21284686
    42. G. J. McKenzieet al., Impaired development of Th2 cells in
    IL-13-deficient mice.Immunity 9 , 423–432 (1998).
    doi:10.1016/S1074-7613(00)80625-1; pmid: 9768762
    43. G. J. McKenzie, P. G. Fallon, C. L. Emson, R. K. Grencis,
    A. N. McKenzie, Simultaneous disruption of interleukin (IL)-4
    and IL-13 defines individual roles in T helper cell type 2-
    mediated responses.J. Exp. Med. 189 , 1565–1572 (1999).
    doi:10.1084/jem.189.10.1565; pmid: 10330435
    44. T. R. Ramalingamet al., Unique functions of the type II
    interleukin 4 receptor identified in mice lacking the interleukin
    13 receptor alpha1 chain.Nat. Immunol. 9 ,25–33 (2008).
    doi:10.1038/ni1544; pmid: 18066066
    45. A. Ballesteros-Tatoet al., T follicular helper cell plasticity
    shapes pathogenic T helper 2 cell-mediated immunity to
    inhaled house dust mite.Immunity 44 , 259–273 (2016).
    doi:10.1016/j.immuni.2015.11.017; pmid: 26825674
    46. A. Glatman Zaretskyet al., T follicular helper cells differentiate
    from Th2 cells in response to helminth antigens.J. Exp. Med.
    206 , 991–999 (2009). doi:10.1084/jem.20090303;
    pmid: 19380637
    47. S. Nakayamadaet al., Early Th1 cell differentiation is marked
    by a Tfh cell-like transition.Immunity 35 , 919–931 (2011).
    doi:10.1016/j.immuni.2011.11.012; pmid: 22195747
    48. S.Keleset al., Dedicator of cytokinesis 8 regulates signal
    transducer and activator of transcription 3 activation
    and promotes TH17 cell differentiation.J. Allergy Clin. Immunol.
    138 , 1384–1394.e2 (2016). doi:10.1016/j.jaci.2016.04.023;
    pmid: 27350570
    49.C.J.Kearney,K.L.Randall,J.Oliaro,DOCK8regulates
    signal transduction events to control immunity.Cell. Mol.
    Immunol. 14 ,406–411 (2017). doi:10.1038/cmi.2017.9;
    pmid: 28366940
    50. H. Wuet al., An inhibitory role for the transcription factor
    Stat3 in controlling IL-4 and Bcl6 expression in follicular helper
    T cells.J. Immunol. 195 , 2080–2089 (2015). doi:10.4049/
    jimmunol.1500335; pmid: 26188063
    51. A. Erazoet al., Unique maturation program of the IgE response
    in vivo.Immunity 26 , 191–203 (2007). doi:10.1016/
    j.immuni.2006.12.006; pmid: 17292640
    52. M. Yazdanbakhsh, P. G. Kremsner, R. van Ree, Allergy,
    parasites, and the hygiene hypothesis.Science 296 , 490– 494
    (2002). doi:10.1126/science.296.5567.490; pmid: 11964470
    53. J. S. Heet al., Biology of IgE production: IgE cell differentiation
    and the memory of IgE responses.Curr. Top. Microbiol.
    Immunol. 388 ,1–19 (2015). doi:10.1007/978-3-319-13725-4_1;
    pmid: 25553792
    54. C. M. Fitzsimmons, F. H. Falcone, D. W. Dunne, Helminth
    allergens, parasite-specific IgE, and its protective role in
    human immunity.Front. Immunol. 5 , 61 (2014). doi:10.3389/
    fimmu.2014.00061; pmid: 24592267


Gowthamanet al.,Science 365 , eaaw6433 (2019) 30 August 2019 13 of 14


RESEARCH | RESEARCH ARTICLE

Free download pdf