that connect T-tubules and the SR membrane ( 8 ).
Here, we discovered that JP2 contains additional
regulatory domains that extend beyond its role as
a structural protein. An NLS in the N-terminal
region of JP2 is necessary for nuclear import of
the calpain-generated JP2NT truncate. Thus,
under stress conditions, calpain-mediated cleav-
age of JP2 serves two purposes: (i) It impairs the
bridging of T-tubules with the SR membrane
[contributing to cardiomyocyte ultrastructural
remodeling and E-C uncoupling ( 23 )], and (ii) it
liberates JP2NT, allowing JP2NT to translocate
to the nucleus and mediate transcriptional re-
programming. In addition, we found that the
a-helix region of JP2 contains a previously un-
appreciated DNA binding domain that medi-
ates selective binding to canonical TATA box
motifs and MRE. This DNA binding domain is
evolutionarily conserved, suggestive of a dual
function for JP2 as a structural protein and tran-
scriptional regulator in other species.
The development and progression of heart
failure involves diverse cellular and molecular
mechanisms ( 41 , 42 ). Our ChIP-seq and tran-
scriptomic profiling data suggest that JP2NT
suppresses gene transcription by targeting multi-
ple signaling pathways such as inflammatory re-
sponses, fibrosis, myocyte hypotrophy, and cell
death among others. Taken with the protective
effect of JP2NT overexpression in the setting of
cardiac stress, this study indicates that JP2NT is
an endogenous self-protective stress transducer
that conveys the E-C uncoupling signal to the nu-
cleus, regulates transcriptional reprogramming,
and ultimately attenuates the progression of heart
failure. As JP2 is abundant in all muscle cells
(cardiac, skeletal, and smooth muscle), JP2NT
may serve as a general protective mechanism
antagonizing stress-induced pathological remod-
eling related to many diseases.
REFERENCES AND NOTES
- D. E. Clapham, Calcium signaling.Cell 131 , 1047–1058 (2007).
 doi:10.1016/j.cell.2007.11.028; pmid: 18083096
- D. M. Bers, Cardiac excitation-contraction coupling.Nature
 415 , 198–205 (2002). doi:10.1038/415198a; pmid: 11805843
- H. Cheng, W. J. Lederer, M. B. Cannell, Calcium sparks:
 Elementary events underlying excitation-contraction coupling
 in heart muscle.Science 262 , 740–744 (1993). doi:10.1126/
 science.8235594; pmid: 8235594
- M. B. Cannell, H. Cheng, W. J. Lederer, The control of calcium
 release in heart muscle.Science 268 , 1045–1049 (1995).
 doi:10.1126/science.7754384; pmid: 7754384
- J. R. López-López, P. S. Shacklock, C. W. Balke, W. G. Wier,
 Local calcium transients triggered by single L-type calcium
 channel currents in cardiac cells.Science 268 , 1042– 1045
 (1995). doi:10.1126/science.7754383; pmid: 7754383
- S. Q. Wang, L. S. Song, E. G. Lakatta, H. Cheng, Ca2+signalling
 between single L-type Ca2+channels and ryanodine receptors
 in heart cells.Nature 410 , 592–596 (2001). doi:10.1038/
 35069083 ; pmid: 11279498
- E. Page, M. Surdyk-Droske, Distribution, surface density, and
 membrane area of diadic junctional contacts between plasma
 membrane and terminal cisterns in mammalian ventricle.
 Circ. Res. 45 , 260–267 (1979). doi:10.1161/01.RES.45.2.260;
 pmid: 376173
- H. Takeshima, S. Komazaki, M. Nishi, M. Iino, K. Kangawa,
 Junctophilins: A novel family of junctional membrane complex
 proteins.Mol. Cell 6 ,11–22 (2000). pmid: 10949023
- M. Nishi, A. Mizushima, Ki. Nakagawara, H. Takeshima,
 Characterization of human junctophilin subtype genes.
Biochem. Biophys. Res. Commun. 273 , 920–927 (2000).
doi:10.1006/bbrc.2000.3011; pmid: 10891348- R. J. van Oortet al., Disrupted junctional membrane complexes
 and hyperactive ryanodine receptors after acute junctophilin
 knockdown in mice.Circulation 123 , 979–988 (2011).
 doi:10.1161/CIRCULATIONAHA.110.006437; pmid: 21339484
- A. Guoet al., Overexpression of junctophilin-2 does not enhance
 baseline function but attenuates heart failure development after
 cardiac stress.Proc. Natl. Acad. Sci. U.S.A. 111 ,12240– 12245
 (2014). doi:10.1073/pnas.1412729111; pmid: 25092313
- A. M. Gómezet al., Defective excitation-contraction coupling in
 experimental cardiac hypertrophy and heart failure.Science
 276 , 800–806 (1997). doi:10.1126/science.276.5313.800;
 pmid: 9115206
- S. E. Litwin, D. Zhang, J. H. Bridge, Dyssynchronous Ca2+sparks
 in myocytes from infarcted hearts.Circ. Res. 87 ,1040– 1047
 (2000). doi:10.1161/01.RES.87.11.1040;pmid: 11090550
- L. S. Songet al., Orphaned ryanodine receptors in the failing
 heart.Proc. Natl. Acad. Sci. U.S.A. 103 , 4305–4310 (2006).
 doi:10.1073/pnas.0509324103; pmid: 16537526
- M. Xuet al., Intermolecular failure of L-type Ca2+channel and
 ryanodine receptor signaling in hypertrophy.PLOS Biol. 5 , e21
 (2007). doi:10.1371/journal.pbio.0050021; pmid: 17214508
- A. Guo, C. Zhang, S. Wei, B. Chen, L. S. Song, Emerging
 mechanisms of T-tubule remodelling in heart failure.
 Cardiovasc. Res. 98 , 204–215 (2013). doi:10.1093/cvr/cvt020;
 pmid: 23393229
- S. Weiet al., T-tubule remodeling during transition from
 hypertrophy to heart failure.Circ. Res. 107 , 520–531 (2010).
 doi:10.1161/CIRCRESAHA.109.212324; pmid: 20576937
- M. Xuet al., Mir-24 regulates junctophilin-2 expression in
 cardiomyocytes.Circ. Res. 111 , 837–841 (2012). doi:10.1161/
 CIRCRESAHA.112.277418; pmid: 22891046
- H. D. Wuet al., Ultrastructural remodelling of Ca2+signalling
 apparatus in failing heart cells.Cardiovasc. Res. 95 , 430– 438
 (2012). doi:10.1093/cvr/cvs195; pmid: 22707157
- M. Jianget al., JPH-2 interacts with Cai-handling proteins and
 ion channels in dyads: Contribution to premature ventricular
 contraction-induced cardiomyopathy.Heart Rhythm 13 ,743– 752
 (2016). doi:10.1016/j.hrthm.2015.10.037; pmid: 26538326
- S. Minamisawaet al., Junctophilin type 2 is associated with
 caveolin-3 and is down-regulated in the hypertrophic and
 dilated cardiomyopathies.Biochem. Biophys. Res. Commun.
 325 , 852–856 (2004). doi:10.1016/j.bbrc.2004.10.107;
 pmid: 15541368
- H. B. Zhanget al., Ultrastructural uncoupling between
 T-tubules and sarcoplasmic reticulum in human heart failure.
 Cardiovasc. Res. 98 , 269–276 (2013). doi:10.1093/cvr/
 cvt030; pmid: 23405000
- C. Y. Wuet al., Calpain-dependent cleavage of junctophilin-2
 and T-tubule remodeling in a mouse model of reversible heart
 failure.J. Am. Heart Assoc. 3 , e000527 (2014). doi:10.1161/
 JAHA.113.000527; pmid: 24958777
- A. Guoet al., Molecular Determinants of Calpain-dependent
 Cleavage of Junctophilin-2 Protein in Cardiomyocytes.
 J. Biol. Chem. 290 , 17946–17955 (2015). doi:10.1074/
 jbc.M115.652396; pmid: 26063807
- Y. Wanget al., Targeting Calpain for Heart Failure Therapy:
 Implications From Multiple Murine Models.JACC Basic Transl.
 Sci. 3 , 503–517 (2018). doi:10.1016/j.jacbts.2018.05.004;
 pmid: 30175274
- J. D. Molkentinet al., A calcineurin-dependent transcriptional
 pathway for cardiac hypertrophy.Cell 93 , 215–228 (1998).
 doi:10.1016/S0092-8674(00)81573-1; pmid: 9568714
- N. Frey, T. A. McKinsey, E. N. Olson, Decoding calcium signals
 involved in cardiac growth and function.Nat. Med. 6 ,
 1221 – 1227 (2000). doi:10.1038/81321; pmid: 11062532
- R. Passieret al .,CaM kinase signaling induces cardiac
 hypertrophy and activates the MEF2 transcription factor
 in vivo.J. Clin. Invest. 105 , 1395–1406 (2000). doi:10.1172/
 JCI8551; pmid: 10811847
- J. Backs, K. Song, S. Bezprozvannaya, S. Chang, E. N. Olson,
 CaM kinase II selectively signals to histone deacetylase 4
 during cardiomyocyte hypertrophy.J. Clin. Invest. 116 ,
 1853 – 1864 (2006). doi:10.1172/JCI27438; pmid: 16767219
- X. Wuet al., Local InsP3-dependent perinuclear Ca2+
 signaling in cardiac myocyte excitation-transcription coupling.
 J. Clin. Invest. 116 , 675–682 (2006). doi:10.1172/JCI27374;
 pmid: 16511602
- M. Colellaet al., Ca2+oscillation frequency decoding in cardiac
 cell hypertrophy: Role of calcineurin/NFAT as Ca2+signal
integrators.Proc. Natl. Acad. Sci. U.S.A. 105 , 2859– 2864
(2008). doi:10.1073/pnas.0712316105; pmid: 18287024- S. R. Houser, J. D. Molkentin, Does contractile Ca2+control
 calcineurin-NFAT signaling and pathological hypertrophy in
 cardiac myocytes?Sci. Signal. 1 , pe31 (2008). doi:10.1126/
 scisignal.125pe31; pmid: 18577756
- A. S. Galvezet al., Cardiomyocyte degeneration with calpain
 deficiency reveals a critical role in protein homeostasis.
 Circ. Res. 100 , 1071–1078 (2007). doi:10.1161/
 01.RES.0000261938.28365.11; pmid: 17332428
- C. Patterson, A. L. Portbury, J. C. Schisler, M. S. Willis, Tear me
 down: Role of calpain in the development of cardiac ventricular
 hypertrophy.Circ. Res. 109 , 453–462 (2011). doi:10.1161/
 CIRCRESAHA.110.239749; pmid: 21817165
- D. J. Williams, H. L. Puhl 3rd, S. R. Ikeda, Rapid modification of
 proteins using a rapamycin-inducible tobacco etch virus
 protease system.PLOS ONE 4 , e7474 (2009). doi:10.1371/
 journal.pone.0007474; pmid: 19830250
- C. J. Sigristet al., PROSITE: A documented database
 using patterns and profiles as motif descriptors.Brief. Bioinform.
 3 ,265–274 (2002). doi:10.1093/bib/3.3.265;pmid: 12230035
- G. Narasimhanet al., Mining protein sequences for motifs.
 J. Comput. Biol. 9 , 707–720 (2002). doi:10.1089/
 106652702761034145 ; pmid: 12487759
- J. Wysocka, P. T. Reilly, W. Herr, Loss of HCF-1-chromatin
 association precedes temperature-induced growth arrest of
 tsBN67 cells.Mol. Cell. Biol. 21 , 3820–3829 (2001).
 doi:10.1128/MCB.21.11.3820-3829.2001; pmid: 11340173
- D. Sayed, M. He, Z. Yang, L. Lin, M. Abdellatif, Transcriptional
 regulation patterns revealed by high resolution chromatin
 immunoprecipitation during cardiac hypertrophy.J. Biol. Chem.
 288 , 2546–2558 (2013). doi:10.1074/jbc.M112.429449;
 pmid: 23229551
- F. J. Naya, C. Wu, J. A. Richardson, P. Overbeek, E. N. Olson,
 Transcriptional activity of MEF2 during mouse embryogenesis
 monitored with a MEF2-dependent transgene.Development
 126 , 2045–2052 (1999). pmid: 10207130
- J. O. Mudd, D. A. Kass, Tackling heart failure in the twenty-first
 century.Nature 451 , 919–928 (2008). doi:10.1038/
 nature06798; pmid: 18288181
- J. H. van Berlo, M. Maillet, J. D. Molkentin, Signaling effectors
 underlying pathologic growth and remodeling of the heart.
 J. Clin. Invest. 123 ,37–45 (2013). doi:10.1172/JCI62839;
 pmid: 23281408
 ACKNOWLEDGMENTS
 We thank M. J. Welsh, K. P. Campbell, E. D. Abel, B. London,
 L. Yang (University of Iowa), and S. R. W. Chen (University of
 Calgary) for reading the manuscript and providing constructive
 comments, S. R. Ikeda (NIAAA/NIH) for providing TEVp plasmids,
 and W. Kutschke for technique aids in animal surgery.Funding:
 This work was funded by NIH R01 HL090905, HL130346, VA
 1I01BX002334 (L.S.S.), AHA 16SDG30820003 (A.G.); NIH R01
 HL125436 (C.G.), OD019941 (B.W.), and China NSF 81570293 (J.H.).
 Author contributions:L.S.S. supervised the project; A.G. and
 L.S.S. designed the study; A.G., Y.W., B.C., J.Y., L.Y.Z., D.H., J.W.,
 Y.S., Q.Z., C.C., R.W., and X.Z. performed the experiments and
 data analysis; Y.W. (Yunhao) and A.G. performed bioinformatics
 analyses; C.G., M.E.A, F.Z., K.F.A., C.M., M.P., W.Z., and J.H.
 participated in supervision of experiments, data analysis,
 interpretations and revision of the manuscript. A.G. and L.S.S.
 wrote the manuscript. All authors reviewed the results and edited
 and approved the final version of the manuscript.Competing
 interests:The authors have no conflicting financial interests.Data
 and materials availability:Microarray and Sequencing data are
 available at NCBI Gene Expression Omnibus (GEO) with accession
 numbers GSE121545, GSE121546, and GSE121547. All other data
 are available in the manuscript or the supplementary materials.
SUPPLEMENTARY MATERIALS
http://www.sciencemag.org/content/362/6421/eaan3303/suppl/DC1
Materials and Methods
Figs. S1 to S10
Tables S1 to S5
References ( 43 – 55 )
8 April 2017; resubmitted 10 May 2018
Accepted 24 October 2018
Published online 8 November 2018
10.1126/science.aan3303Guoet al.,Science 362 , eaan3303 (2018) 21 December 2018 9of9
RESEARCH | RESEARCH ARTICLE
on December 25, 2018^http://science.sciencemag.org/Downloaded from