Science - USA (2018-12-21)

(Antfer) #1

that connect T-tubules and the SR membrane ( 8 ).
Here, we discovered that JP2 contains additional
regulatory domains that extend beyond its role as
a structural protein. An NLS in the N-terminal
region of JP2 is necessary for nuclear import of
the calpain-generated JP2NT truncate. Thus,
under stress conditions, calpain-mediated cleav-
age of JP2 serves two purposes: (i) It impairs the
bridging of T-tubules with the SR membrane
[contributing to cardiomyocyte ultrastructural
remodeling and E-C uncoupling ( 23 )], and (ii) it
liberates JP2NT, allowing JP2NT to translocate
to the nucleus and mediate transcriptional re-
programming. In addition, we found that the
a-helix region of JP2 contains a previously un-
appreciated DNA binding domain that medi-
ates selective binding to canonical TATA box
motifs and MRE. This DNA binding domain is
evolutionarily conserved, suggestive of a dual
function for JP2 as a structural protein and tran-
scriptional regulator in other species.
The development and progression of heart
failure involves diverse cellular and molecular
mechanisms ( 41 , 42 ). Our ChIP-seq and tran-
scriptomic profiling data suggest that JP2NT
suppresses gene transcription by targeting multi-
ple signaling pathways such as inflammatory re-
sponses, fibrosis, myocyte hypotrophy, and cell
death among others. Taken with the protective
effect of JP2NT overexpression in the setting of
cardiac stress, this study indicates that JP2NT is
an endogenous self-protective stress transducer
that conveys the E-C uncoupling signal to the nu-
cleus, regulates transcriptional reprogramming,
and ultimately attenuates the progression of heart
failure. As JP2 is abundant in all muscle cells
(cardiac, skeletal, and smooth muscle), JP2NT
may serve as a general protective mechanism
antagonizing stress-induced pathological remod-
eling related to many diseases.


REFERENCES AND NOTES



  1. D. E. Clapham, Calcium signaling.Cell 131 , 1047–1058 (2007).
    doi:10.1016/j.cell.2007.11.028; pmid: 18083096

  2. D. M. Bers, Cardiac excitation-contraction coupling.Nature
    415 , 198–205 (2002). doi:10.1038/415198a; pmid: 11805843

  3. H. Cheng, W. J. Lederer, M. B. Cannell, Calcium sparks:
    Elementary events underlying excitation-contraction coupling
    in heart muscle.Science 262 , 740–744 (1993). doi:10.1126/
    science.8235594; pmid: 8235594

  4. M. B. Cannell, H. Cheng, W. J. Lederer, The control of calcium
    release in heart muscle.Science 268 , 1045–1049 (1995).
    doi:10.1126/science.7754384; pmid: 7754384

  5. J. R. López-López, P. S. Shacklock, C. W. Balke, W. G. Wier,
    Local calcium transients triggered by single L-type calcium
    channel currents in cardiac cells.Science 268 , 1042– 1045
    (1995). doi:10.1126/science.7754383; pmid: 7754383

  6. S. Q. Wang, L. S. Song, E. G. Lakatta, H. Cheng, Ca2+signalling
    between single L-type Ca2+channels and ryanodine receptors
    in heart cells.Nature 410 , 592–596 (2001). doi:10.1038/
    35069083 ; pmid: 11279498

  7. E. Page, M. Surdyk-Droske, Distribution, surface density, and
    membrane area of diadic junctional contacts between plasma
    membrane and terminal cisterns in mammalian ventricle.
    Circ. Res. 45 , 260–267 (1979). doi:10.1161/01.RES.45.2.260;
    pmid: 376173

  8. H. Takeshima, S. Komazaki, M. Nishi, M. Iino, K. Kangawa,
    Junctophilins: A novel family of junctional membrane complex
    proteins.Mol. Cell 6 ,11–22 (2000). pmid: 10949023

  9. M. Nishi, A. Mizushima, Ki. Nakagawara, H. Takeshima,
    Characterization of human junctophilin subtype genes.


Biochem. Biophys. Res. Commun. 273 , 920–927 (2000).
doi:10.1006/bbrc.2000.3011; pmid: 10891348


  1. R. J. van Oortet al., Disrupted junctional membrane complexes
    and hyperactive ryanodine receptors after acute junctophilin
    knockdown in mice.Circulation 123 , 979–988 (2011).
    doi:10.1161/CIRCULATIONAHA.110.006437; pmid: 21339484

  2. A. Guoet al., Overexpression of junctophilin-2 does not enhance
    baseline function but attenuates heart failure development after
    cardiac stress.Proc. Natl. Acad. Sci. U.S.A. 111 ,12240– 12245
    (2014). doi:10.1073/pnas.1412729111; pmid: 25092313

  3. A. M. Gómezet al., Defective excitation-contraction coupling in
    experimental cardiac hypertrophy and heart failure.Science
    276 , 800–806 (1997). doi:10.1126/science.276.5313.800;
    pmid: 9115206

  4. S. E. Litwin, D. Zhang, J. H. Bridge, Dyssynchronous Ca2+sparks
    in myocytes from infarcted hearts.Circ. Res. 87 ,1040– 1047
    (2000). doi:10.1161/01.RES.87.11.1040;pmid: 11090550

  5. L. S. Songet al., Orphaned ryanodine receptors in the failing
    heart.Proc. Natl. Acad. Sci. U.S.A. 103 , 4305–4310 (2006).
    doi:10.1073/pnas.0509324103; pmid: 16537526

  6. M. Xuet al., Intermolecular failure of L-type Ca2+channel and
    ryanodine receptor signaling in hypertrophy.PLOS Biol. 5 , e21
    (2007). doi:10.1371/journal.pbio.0050021; pmid: 17214508

  7. A. Guo, C. Zhang, S. Wei, B. Chen, L. S. Song, Emerging
    mechanisms of T-tubule remodelling in heart failure.
    Cardiovasc. Res. 98 , 204–215 (2013). doi:10.1093/cvr/cvt020;
    pmid: 23393229

  8. S. Weiet al., T-tubule remodeling during transition from
    hypertrophy to heart failure.Circ. Res. 107 , 520–531 (2010).
    doi:10.1161/CIRCRESAHA.109.212324; pmid: 20576937

  9. M. Xuet al., Mir-24 regulates junctophilin-2 expression in
    cardiomyocytes.Circ. Res. 111 , 837–841 (2012). doi:10.1161/
    CIRCRESAHA.112.277418; pmid: 22891046

  10. H. D. Wuet al., Ultrastructural remodelling of Ca2+signalling
    apparatus in failing heart cells.Cardiovasc. Res. 95 , 430– 438
    (2012). doi:10.1093/cvr/cvs195; pmid: 22707157

  11. M. Jianget al., JPH-2 interacts with Cai-handling proteins and
    ion channels in dyads: Contribution to premature ventricular
    contraction-induced cardiomyopathy.Heart Rhythm 13 ,743– 752
    (2016). doi:10.1016/j.hrthm.2015.10.037; pmid: 26538326

  12. S. Minamisawaet al., Junctophilin type 2 is associated with
    caveolin-3 and is down-regulated in the hypertrophic and
    dilated cardiomyopathies.Biochem. Biophys. Res. Commun.
    325 , 852–856 (2004). doi:10.1016/j.bbrc.2004.10.107;
    pmid: 15541368

  13. H. B. Zhanget al., Ultrastructural uncoupling between
    T-tubules and sarcoplasmic reticulum in human heart failure.
    Cardiovasc. Res. 98 , 269–276 (2013). doi:10.1093/cvr/
    cvt030; pmid: 23405000

  14. C. Y. Wuet al., Calpain-dependent cleavage of junctophilin-2
    and T-tubule remodeling in a mouse model of reversible heart
    failure.J. Am. Heart Assoc. 3 , e000527 (2014). doi:10.1161/
    JAHA.113.000527; pmid: 24958777

  15. A. Guoet al., Molecular Determinants of Calpain-dependent
    Cleavage of Junctophilin-2 Protein in Cardiomyocytes.
    J. Biol. Chem. 290 , 17946–17955 (2015). doi:10.1074/
    jbc.M115.652396; pmid: 26063807

  16. Y. Wanget al., Targeting Calpain for Heart Failure Therapy:
    Implications From Multiple Murine Models.JACC Basic Transl.
    Sci. 3 , 503–517 (2018). doi:10.1016/j.jacbts.2018.05.004;
    pmid: 30175274

  17. J. D. Molkentinet al., A calcineurin-dependent transcriptional
    pathway for cardiac hypertrophy.Cell 93 , 215–228 (1998).
    doi:10.1016/S0092-8674(00)81573-1; pmid: 9568714

  18. N. Frey, T. A. McKinsey, E. N. Olson, Decoding calcium signals
    involved in cardiac growth and function.Nat. Med. 6 ,
    1221 – 1227 (2000). doi:10.1038/81321; pmid: 11062532

  19. R. Passieret al .,CaM kinase signaling induces cardiac
    hypertrophy and activates the MEF2 transcription factor
    in vivo.J. Clin. Invest. 105 , 1395–1406 (2000). doi:10.1172/
    JCI8551; pmid: 10811847

  20. J. Backs, K. Song, S. Bezprozvannaya, S. Chang, E. N. Olson,
    CaM kinase II selectively signals to histone deacetylase 4
    during cardiomyocyte hypertrophy.J. Clin. Invest. 116 ,
    1853 – 1864 (2006). doi:10.1172/JCI27438; pmid: 16767219

  21. X. Wuet al., Local InsP3-dependent perinuclear Ca2+
    signaling in cardiac myocyte excitation-transcription coupling.
    J. Clin. Invest. 116 , 675–682 (2006). doi:10.1172/JCI27374;
    pmid: 16511602

  22. M. Colellaet al., Ca2+oscillation frequency decoding in cardiac
    cell hypertrophy: Role of calcineurin/NFAT as Ca2+signal


integrators.Proc. Natl. Acad. Sci. U.S.A. 105 , 2859– 2864
(2008). doi:10.1073/pnas.0712316105; pmid: 18287024


  1. S. R. Houser, J. D. Molkentin, Does contractile Ca2+control
    calcineurin-NFAT signaling and pathological hypertrophy in
    cardiac myocytes?Sci. Signal. 1 , pe31 (2008). doi:10.1126/
    scisignal.125pe31; pmid: 18577756

  2. A. S. Galvezet al., Cardiomyocyte degeneration with calpain
    deficiency reveals a critical role in protein homeostasis.
    Circ. Res. 100 , 1071–1078 (2007). doi:10.1161/
    01.RES.0000261938.28365.11; pmid: 17332428

  3. C. Patterson, A. L. Portbury, J. C. Schisler, M. S. Willis, Tear me
    down: Role of calpain in the development of cardiac ventricular
    hypertrophy.Circ. Res. 109 , 453–462 (2011). doi:10.1161/
    CIRCRESAHA.110.239749; pmid: 21817165

  4. D. J. Williams, H. L. Puhl 3rd, S. R. Ikeda, Rapid modification of
    proteins using a rapamycin-inducible tobacco etch virus
    protease system.PLOS ONE 4 , e7474 (2009). doi:10.1371/
    journal.pone.0007474; pmid: 19830250

  5. C. J. Sigristet al., PROSITE: A documented database
    using patterns and profiles as motif descriptors.Brief. Bioinform.
    3 ,265–274 (2002). doi:10.1093/bib/3.3.265;pmid: 12230035

  6. G. Narasimhanet al., Mining protein sequences for motifs.
    J. Comput. Biol. 9 , 707–720 (2002). doi:10.1089/
    106652702761034145 ; pmid: 12487759

  7. J. Wysocka, P. T. Reilly, W. Herr, Loss of HCF-1-chromatin
    association precedes temperature-induced growth arrest of
    tsBN67 cells.Mol. Cell. Biol. 21 , 3820–3829 (2001).
    doi:10.1128/MCB.21.11.3820-3829.2001; pmid: 11340173

  8. D. Sayed, M. He, Z. Yang, L. Lin, M. Abdellatif, Transcriptional
    regulation patterns revealed by high resolution chromatin
    immunoprecipitation during cardiac hypertrophy.J. Biol. Chem.
    288 , 2546–2558 (2013). doi:10.1074/jbc.M112.429449;
    pmid: 23229551

  9. F. J. Naya, C. Wu, J. A. Richardson, P. Overbeek, E. N. Olson,
    Transcriptional activity of MEF2 during mouse embryogenesis
    monitored with a MEF2-dependent transgene.Development
    126 , 2045–2052 (1999). pmid: 10207130

  10. J. O. Mudd, D. A. Kass, Tackling heart failure in the twenty-first
    century.Nature 451 , 919–928 (2008). doi:10.1038/
    nature06798; pmid: 18288181

  11. J. H. van Berlo, M. Maillet, J. D. Molkentin, Signaling effectors
    underlying pathologic growth and remodeling of the heart.
    J. Clin. Invest. 123 ,37–45 (2013). doi:10.1172/JCI62839;
    pmid: 23281408
    ACKNOWLEDGMENTS
    We thank M. J. Welsh, K. P. Campbell, E. D. Abel, B. London,
    L. Yang (University of Iowa), and S. R. W. Chen (University of
    Calgary) for reading the manuscript and providing constructive
    comments, S. R. Ikeda (NIAAA/NIH) for providing TEVp plasmids,
    and W. Kutschke for technique aids in animal surgery.Funding:
    This work was funded by NIH R01 HL090905, HL130346, VA
    1I01BX002334 (L.S.S.), AHA 16SDG30820003 (A.G.); NIH R01
    HL125436 (C.G.), OD019941 (B.W.), and China NSF 81570293 (J.H.).
    Author contributions:L.S.S. supervised the project; A.G. and
    L.S.S. designed the study; A.G., Y.W., B.C., J.Y., L.Y.Z., D.H., J.W.,
    Y.S., Q.Z., C.C., R.W., and X.Z. performed the experiments and
    data analysis; Y.W. (Yunhao) and A.G. performed bioinformatics
    analyses; C.G., M.E.A, F.Z., K.F.A., C.M., M.P., W.Z., and J.H.
    participated in supervision of experiments, data analysis,
    interpretations and revision of the manuscript. A.G. and L.S.S.
    wrote the manuscript. All authors reviewed the results and edited
    and approved the final version of the manuscript.Competing
    interests:The authors have no conflicting financial interests.Data
    and materials availability:Microarray and Sequencing data are
    available at NCBI Gene Expression Omnibus (GEO) with accession
    numbers GSE121545, GSE121546, and GSE121547. All other data
    are available in the manuscript or the supplementary materials.


SUPPLEMENTARY MATERIALS
http://www.sciencemag.org/content/362/6421/eaan3303/suppl/DC1
Materials and Methods
Figs. S1 to S10
Tables S1 to S5
References ( 43 – 55 )
8 April 2017; resubmitted 10 May 2018
Accepted 24 October 2018
Published online 8 November 2018
10.1126/science.aan3303

Guoet al.,Science 362 , eaan3303 (2018) 21 December 2018 9of9


RESEARCH | RESEARCH ARTICLE


on December 25, 2018^

http://science.sciencemag.org/

Downloaded from
Free download pdf