Science - USA (2019-01-04)

(Antfer) #1

The light-scattering force from the cooling
lasers also notably retarded the expansion of the
plasma, as shown in Fig. 3 for the same initial
plasma conditions as in Fig. 2. The kinetic model
discussed above provides a reasonable descrip-
tion of the evolution of the RMS size along the
laseraxis(Fig.3B).Forlargerinitialplasmasize
and detuning of the cooling laser, retardation
of the expansion was even more effective ( 36 ),
raising the intriguing possibility of confining a
neutral plasma with optical forces, perhaps with
the addition of spatially varying magnetic fields
in a hybrid magneto-optical trap ( 4 ) and mag-
netic cusp ( 40 ) configuration. For blue detun-
ing, the plasma bifurcated because ions were
accelerated away from the center until the force
diminished when the velocity exceeded the cap-
turerange.Themarkedchangeinexpansiondy-
namics for blue detuning highlights the potential
of laser forces for manipulating a plasma.
Figure 4 illustrates the variation of laser-
coolingandheatingeffects with detuningD.
After 135ms of laser application,Giin the central
region was minimized forD~−20 MHz. How-


ever, as the lasers were further red detuned, more
of the cloud experienced the light-scattering
forces for a longer time, creating a larger region
of cooled ions at the expense of slightly decreased
cooling efficiency (Fig. 4A, inset). Similarly, the
acceleration of plasma expansion for the heating
configuration was most effective for a relatively
large blue detuning,D~50MHz,asshowninthe
plot of RMS size along the laser axis (Fig. 4B).
WithGi= 11, laser-cooled UNPs are already in
an interesting regime for applying established
techniques for measuring collision rates, trans-
port, and dispersion relations ( 15 , 25 ). Laser forces
also open entirely new possibilities. For example,
by patterning the lasers spatially, it should be
possible to create reasonably sharp velocity gradi-
ents and measure shear viscosity. Heating and
cooling separate regions of the plasmas should
initiate heat flow and allow measurement of ther-
mal conductivity. There are also straightforward
opportunities to improve the laser-cooling pro-
cess, such as investigating cooling along three
dimensions, which might be effective for plasma
confinement. Increasing the number of ionized

atoms would allow for largers 0 andtexpfor a
given density. Laser cooling could then be ap-
plied for a longer time, leading to lower temper-
ature and higherGi. The lowest temperature
theoretically achievable with Doppler cooling
on this transition isTDoppler=hg/2kB= 0.5 mK
( 4 ), and even with present conditions it is likely
that cooling can continue longer than reported
here and below 50 mK. However, the natural
linewidth of the LIF transition is already large
compared with the Doppler broadening at this
temperature, limiting further application of this
temperature diagnostic. Improving the temper-
ature resolution by, for example, using a narrow
two-photon transition to a metastableDstate
should enable measurement of lower tempera-
ture. Then it will be possible to study the laser-
cooling and laser-confinement limits imposed
by electron-ion heating and three-body recom-
bination ( 14 , 15 , 32 ).

REFERENCES AND NOTES


  1. D. Wineland, R. Drullinger, F. Walls,Phys. Rev. Lett. 40 ,
    1639 – 1642 (1978).

  2. W. Neuhauser, M. Hohenstatt, P. Toschek, H. Dehmelt,
    Phys. Rev. Lett. 41 , 233–236 (1978).

  3. D. H. E. Dubin, T. M. O’Neil,Rev. Mod. Phys. 71 ,87–172 (1999).

  4. H. Metcalf, P. van der Straten,Laser Cooling and Trapping
    (Springer-Verlag, 1999).

  5. H. Haffner, C. F. Roos, R. Blatt,Phys. Rep. 469 , 155– 203
    (2008).

  6. S. Ichimaru,Rev. Mod. Phys. 54 , 1017–1059 (1982).

  7. W. M. Itanoet al.,Science 279 , 686–689 (1998).

  8. A. Mortensen, E. Nielsen, T. Matthey, M. Drewsen,Phys. Rev. Lett.
    96 , 103001 (2006).

  9. C. J. Pethick, H. Smith,Bose–Einstein Condensation in Dilute
    Gases(Cambridge Univ. Press, ed. 2, 2008).

  10. E. S. Shuman, J. F. Barry, D. Demille,Nature 467 , 820– 823
    (2010).

  11. D. V. Seletskiyet al.,Nat. Photonics 4 , 161–164 (2010).

  12. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell,
    C. E. Mungan,Nature 377 , 500–503 (1995).

  13. M. Aspelmeyer, T. J. Kippenberg, F. Marquardt,Rev. Mod. Phys.
    86 , 1391–1452 (2014).

  14. T. C. Killian, T. Pattard, T. Pohl, J. M. Rost,Phys. Rep. 449 ,
    77 – 130 (2007).

  15. M. Lyon, S. L. Rolston,Rep. Prog. Phys. 80 , 017001 (2017).

  16. L. G. Stanton, M. S. Murillo,Phys. Rev. E 93 , 043203 (2016).

  17. M. S. Murillo,Phys. Plasmas 11 , 2964– 2971 (2004).

  18. G. E. Morfill, A. V. Ivlev,Rev. Mod. Phys. 81 , 1353–1404 (2009).

  19. B. A. Remington, R. P. Drake, D. D. Ryutov,Rev. Mod. Phys.
    78 , 755–807 (2006).

  20. J. Clérouin, P. Arnault, C. Ticknor, J. D. Kress, L. A. Collins,
    Phys. Rev. Lett. 116 , 115003 (2016).

  21. J. Daligault,Phys. Rev. Lett. 108 , 225004 (2012).

  22. J. Daligault, K. O. Rasmussen, S. D. Baalrud,Phys. Rev. E 90 ,
    033105 (2014).

  23. Z. Donkó, P. Hartmann,Phys. Rev. E 69 , 016405 (2004).

  24. M. S. Murillo,Phys. Rev. Lett. 96 , 165001 (2006).

  25. T. S. Strickler, T. K. Langin, P. McQuillen, J. Daligault,
    T. C. Killian,Phys. Rev. X 6 , 021021 (2016).

  26. M. S. Murillo,Phys. Rev. Lett. 87 , 115003 (2001).

  27. G. Bannasch, T. C. Killian, T. Pohl,Phys. Rev. Lett. 110 , 253003
    (2013).

  28. D. O. Gericke, M. S. Murillo,Contrib. Plasma Phys. 43 , 298– 301
    (2003).

  29. H. Sadeghiet al.,Phys. Rev. Lett. 112 , 075001 (2014).

  30. M. Lyon, S. D. Bergeson, A. Diaw, M. S. Murillo,Phys. Rev. E 91 ,
    033101 (2015).

  31. M. Robert-de-Saint-Vincentet al.,Phys. Rev. Lett. 110 , 045004
    (2013).

  32. S. G. Kuzmin, T. M. O’Neil,Phys. Plasmas 9 , 3743– 3751
    (2002).

  33. T. Pohl, T. Pattard, J. M. Rost,Phys. Rev. Lett. 92 , 155003
    (2004).

  34. S. B. Nagelet al.,Phys. Rev. A 67 , 011401 (2003).

  35. M. Fleischhauer, A. Imamoglu, J. P. Marangos,Rev. Mod. Phys.
    77 , 633–673 (2005).


Langinet al.,Science 363 ,61–64 (2019) 4 January 2019 3of4


Fig. 4. Effects of detuning.(A) Temperature atx= 0 versus detuning for 135ms of evolution in
the optical field. The inset showsTiversusxforD=−10 MHz (red) andD=−30 MHz (blue),
along with Gaussian fits. (B) Plasma size versus detuning at 135ms of evolution. Here, size is the
RMS width calculated numerically from the image. Error bars indicate SD.


Fig. 3. Influence of laser forces on plasma expansion.(A) Evolution of plasma density
distribution. Red-detuned optical molasses along^xretarded expansion, whereas blue-detuned light
accelerated it, eventually leading to bifurcation. The scale bar is 5 mm. The color bar is rescaled for
each time tonmax= (13, 8.5, 4.2, 2.2, 1.3) × 10^7 cm−^3 fort= (5, 30, 60, 90, 120)ms. (B) RMS radius
sx(t) from Gaussian fit to experimental data (same symbols as in Fig. 2). Error bars indicate SD.


RESEARCH | REPORT


on January 7, 2019^

http://science.sciencemag.org/

Downloaded from
Free download pdf