Science - USA (2019-01-04)

(Antfer) #1
Challenger observations ( 18 ). More generally,
OPT-0015 indicates that the upper 2000 m of
the ocean has been gaining heat since the 1700s,
but that one-fourth of this heat uptake was
mined from the deeper ocean. This upper-lower
distinction is most pronounced in the Pacific
since 1750, where cooling below 2000 m offsets
more than one-third of the heat gain above
2000 m.
The implications of the deep Pacific being in
disequilibrium become more apparent when
compared to a counterfactual scenario where the
ocean is fully equilibrated with surface conditions
in 1750 CE. That the deep Pacific gains heat in this
scenario, referred to as EQ-1750, confirms that heat
loss in OPT-0015 results from the cooling associated
with entry into the Little Ice Age. Moreover, the
EQ-1750 scenario leads to 85% greater global ocean
heat uptake since 1750 because of excess warming
below 700 m. It follows that historical model simu-
lations are biased toward overestimating ocean
heat uptake when initialized at equilibrium during
the Little Ice Age, although additional biases are
also likely to be present ( 34 ). Finally, we note that
OPT-0015 indicates that ocean heat content was
larger during the Medieval Warm Period than at
present, not because surface temperature was greater,
but because the deep ocean had a longer time to
adjust to surface anomalies. Over multicentennial
time scales, changes in upper and deep ocean
heat content have similar ranges, underscoring
how the deep ocean ultimately plays a leading
role in the planetary heat budget.

REFERENCES AND NOTES


  1. D. Dahl-Jensenet al.,Science 282 , 268–271 (1998).

  2. A. J. Orsi, B. D. Cornuelle, J. P. Severinghaus,
    Geophys. Res. Lett. 39 , L09710 (2012).

  3. PAGES 2k Consortium,Nat. Geosci. 6 , 339–346 (2013).

  4. H. V. McGregoret al.,Nat. Geosci. 8 , 671–677 (2015).

  5. F. Primeau,J. Phys. Oceanogr. 35 , 545–564 (2005).

  6. G. Gebbie, P. Huybers,J. Phys. Oceanogr. 42 ,291– 305
    (2012).

  7. C.Wunsch,P.Heimbach,J. Phys. Oceanogr. 44 ,
    2013 – 2030 (2014).

  8. G. Gebbie, P. Huybers,J. Phys. Oceanogr. 40 ,1710– 1728
    (2010).

  9. G. Gebbie, P. Huybers,Geophys. Res. Lett. 38 , L06604
    (2011).
    10.T.DeVries,F.Primeau,J. Phys. Oceanogr. 41 ,2381– 2401
    (2011).

  10. R. M. Keyet al.,Global Biogeochem. Cycles 18 ,GB4031
    (2004).

  11. M. Holzer, F. Primeau,J. Geophys. Res. 115 ,C12021
    (2010).

  12. É. Delhez, É. Deleersnijder,Cont. Shelf Res. 28 , 1057– 1067
    (2008).

  13. D. C. Lund, J. Lynch-Stieglitz, W. B. Curry,Nature 444 ,
    601 – 604 (2006).

  14. S. Rahmstorfet al.,Nat. Clim. Chang. 5 ,475– 480
    (2015).

  15. J. Marshallet al .,Clim.Dyn. 44 , 2287–2299 (2015).

  16. M. Kawase,J. Phys. Oceanogr. 17 , 2294–2317 (1987).

  17. D. Roemmich, W. J. Gould, J. Gilson,Nat. Clim. Chang. 2 ,
    425 – 428 (2012).

  18. P. Tait,On the Pressure-Errors of the“Challenger”
    Thermometers, Narrative of the Challenger Expedition, Vol. II,
    Appendix A (HM Stationery Office, 1882).

  19. British Oceanographic Data Centre,GEBCO Digital Atlas
    (2003); http://www.bodc.ac.uk/projects/data_management/
    international/gebco/gebco_digital_atlas.

  20. V. Gouretski, K. Koltermann,WOCE Global Hydrographic
    Climatology(Tech. Rep. 35, Berichte des Bundesamtes für
    Seeschifffahrt und Hydrographie, 2004).

  21. D. Roemmich, C. Wunsch,Nature 307 , 447–450 (1984).


Gebbie and Huybers,Science 363 ,70–74 (2019) 4 January 2019 4of5


Fig. 4. Regional surface temperature variations and changes in ocean heat content over the
Common Era.(A) Surface temperature time series after adjustment to fit the HMS Challenger
observations (OPT-0015), including four major surface regions (colored lines) and the global area-weighted
average (black line). (B) Time series of global oceanic heat content anomalies relative to 1750 CE
from OPT-0015 as decomposed into upper (cyan, 0 to 700 m), mid-depth (blue, 700 to 2000 m), and
deep (black, 2000 m to the bottom) layers. Heat content anomalies calculated from an equilibrium
simulation initialized at 1750 (EQ-1750, dashed lines) diverge from the OPT-0015 solution in deeper layers.
(C) Similar to (B) but for the Pacific. Heat content anomaly is in units of zettajoules (1 ZJ = 10^21 J).


RESEARCH | REPORT


on January 7, 2019^

http://science.sciencemag.org/

Downloaded from
Free download pdf