Science - USA (2019-01-04)

(Antfer) #1

expanded genomic targeting via the minimal
Cas12c2 PAM, high-fidelity genome editing using
Cas12i nicking ( 27 ), or sensitive and durable
nucleic acid detection via collateral cleavage by
the thermostable Cas12g1 ( 18 , 22 ). We antici-
pate that our discovery framework will yield
new CRISPR-Cas variants as genomic and meta-
genomic sequence databases grow, expanding the
understanding of CRISPR biology and the nucleic
acid manipulation toolbox.


REFERENCES AND NOTES



  1. D. Bursteinet al.,Nature 542 , 237–241 (2017).

  2. S. Doronet al., Science 359 , eaar4120 (2018).

  3. E. V. Koonin, K. S. Makarova, Y. I. Wolf,Annu. Rev. Microbiol. 71 ,
    233 – 261 (2017).

  4. R. Barrangou, P. Horvath,Nat. Microbiol. 2 ,17092(2017).

  5. R. Barrangouet al.,Science 315 , 1709–1712 (2007).

  6. D. B. T. Cox, R. J. Platt, F. Zhang,Nat. Med. 21 ,121– 131
    (2015).

  7. S. E. Klompe, S. H. Sternberg, Harnessing“A Billion Years
    of Experimentation”: The Ongoing Exploration and
    Exploitation of CRISPR–Cas Immune Systems.CRISPR J. 1 ,
    141 – 158 (2018).

  8. G. J. Knott, J. A. Doudna,Science 361 ,866–869 (2018).

  9. K. S. Makarovaet al.,Nat. Rev. Microbiol. 13 , 722–736 (2015).
    10. S. Shmakovet al.,Mol. Cell 60 , 385–397 (2015).
    11. S. Shmakovet al.,Nat. Rev. Microbiol. 15 ,169–182 (2017).
    12. G. Gasiunas, R. Barrangou, P. Horvath, V. Siksnys,
    Proc. Natl. Acad. Sci. U.S.A. 109 , E2579–E2586 (2012).
    13. M. Jineket al.,Science 337 , 816–821 (2012).
    14. E. V. Koonin, K. S. Makarova, F. Zhang,Curr. Opin. Microbiol.
    37 ,67– 78 (2017).
    15. B. Zetscheet al.,Cell 163 , 759–771 (2015).
    16. J. S. Chenet al.,Science 360 , 436–439 (2018).
    17. O. O. Abudayyehet al.,Science 353 , aaf5573 (2016).
    18. A. East-Seletskyet al.,Nature 538 , 270–273 (2016).
    19. W. X. Yanet al.,Mol. Cell 70 , 327–339.e5 (2018).
    20. L. B. Harringtonet al.,Science 362 , 839–842 (2018).
    21. J. S. Gootenberget al.,Science 360 , 439–444 (2018).
    22. J. S. Gootenberget al.,Science 356 , 438–442 (2017).
    23. D. B. T. Coxet al.,Science 358 , 1019–1027 (2017).
    24. S. Konermannet al.,Cell 173 , 665–676.e14 (2018).
    25. D. Donget al.,Nature 532 , 522–526 (2016).
    26. T. Yamanoet al.,Cell 165 , 949–962 (2016).
    27. F. A. Ranet al.,Cell 154 , 1380– 1389 (2013).
    28. J. H. Huet al.,Nature 556 ,57–63 (2018).


ACKNOWLEDGMENTS
We thank the entire Arbor Biotechnologies team for support and
comments on this work.Funding:Arbor Biotechnologies is a
privately funded company. K.S.M. and E.V.K. are supported by
the intramural program of the U.S. Department of Health
and Human Services (to the National Library of Medicine).
Author contributions:W.X.Y. and D.A.S., with input from P.H.,

D.R.C., L.E.A., J.M.C., E.K.S., S.S., S.C., and A.J.G., conceived
and designed the study. D.R.C. and D.A.S. designed and
implemented the computational searches, with additional input
from K.S.M. and E.V.K., including phylogenetic analysis and
classification. W.X.Y., D.A.S., P.H., L.E.A., J.C., E.K.S., S.S., S.C.,
and A.J.G. performed all of the experimental work and analyzed
the data. W.X.Y. and D.A.S. wrote the manuscript with input
from E.V.K. and help from all authors.Competing interests:
W.X.Y., P.H., L.E.A., J.M.C., E.K.S., S.S., S.C., A.J.G., D.R.C.,
and D.A.S. are employees and shareholders of Arbor
Biotechnologies, Inc. W.X.Y., D.R.C., and D.A.S. are current or
former officers and D.R.C. is a director of Arbor Biotechnologies.
Arbor Biotechnologies has filed patents related to this work.
Data and materials availability:Alldataareavailableinthe
manuscript or the supplementary material. All reagents are
available to the academic community through Addgene.
Sequencing data are available on the NCBI Sequence Read
Archive under Bioproject ID PRJNA496291.

SUPPLEMENTARY MATERIALS
http://www.sciencemag.org/content/363/6422/88/suppl/DC1
Materials and Methods
Figs. S1 to S19
Tables S1 to S10
References ( 29 – 33 )
14 October 2018; accepted 20 November 2018
Published online 6 December 2018
10.1126/science.aav7271

Yanet al.,Science 363 ,88–91 (2019) 4 January 2019 4of4


Fig. 4. In vivo dsDNA interference by Cas12c.
(A) Evaluation of a minimal active system for Cas12c,
with heatmaps showing strongly depleted CRISPR
arrays from in vivo screening in different Cas12c
system compositions. Gray boxes indicate data not
available. (B) (Top) Distribution of bit scores for
all permutations of 1- to 3-nt motifs within the
target and 15-nt flanking sequences corresponding
to strongly depleted arrays. (Bottom) Web logos
from target-flanking sequences. (C) Overview
of minimal components and interference
mechanisms of Cas12g, -h, -i, and -c. Asterisks
denote putative mechanisms subject to
additional validation.

A B


C
Cas12h,i binary complex


5’ crRNA3’

Cas12h: 870 - 924aa;
Cas12i: 1033 - 1093aa

3’ 5’

ssRNA

ssDNA ssDNA

ssDNA?

5’3’ 3’5’
Cis Trans

DNA RNA
Cleavage:

3’5’ * 5’3’ Substrate:


ssDNA or ssRNA

cleavage

System
components

dsDNA cleavage

Cas12c ternary complex

crRNA

tracrRNA

5’
3’ 5’

3’

Cas12c: 1209 - 1330aa

3’ 5’
*?

Subtype V-C Subtype V-H, I
Cas12g ternary complex

3’
3’ 5’

5’ crRNA

tracrRNA
Cas12g: 720 - 830aa

ssRNA3’ 5’
?

Subtype V-G

Distance to 5’ target end

Bit score^0

1

2 2 2

-6

Bit score

0

4
3
2
1

Cas12c1 Cas12c2 OspCas12c

1nt 2nt 3nt
# nt in motif permutation
(log)

800

<5
Screen
Hits

Cas1

dCas12c

Cas12c (WT)

Noncoding

OspCas12c

Cas12c2

Cas12c1

top strand bottom strand

CRISPR array expression

RESEARCH | REPORT


on January 7, 2019^

http://science.sciencemag.org/

Downloaded from
Free download pdf