136 Boosting
isfT. In addition, denoteZt=1
m∑mi=1e−yift(xi).Note that for any hypothesis we have that (^1) [h(x) 6 =y]≤e−yh(x). Therefore,LS(fT)≤
ZT, so it suffices to show thatZT≤e−^2 γ
(^2) T
. To upper boundZTwe rewrite it
as
ZT=
ZT
Z 0 =
ZT
ZT− 1 ·
ZT− 1
ZT− 2 ···
Z 2
Z 1 ·
Z 1
Z 0 , (10.2)
where we used the fact thatZ 0 = 1 becausef 0 ≡0. Therefore, it suffices to show
that for every roundt,
Zt+1
Zt≤e−^2 γ2. (10.3)
To do so, we first note that using a simple inductive argument, for alltandi,D(it+1)= e−yift(xi)
∑m
j=1e−yjft(xj).
Hence,
Zt+1
Zt=
∑m
i=1e−yift+1(xi)
∑m
j=1e−yjft(xj)=
∑m
i=1e−yift(xi)e−yiwt+1ht+1(xi)
∑m
j=1e−yjft(xj)=
∑mi=1D(it+1)e−yiwt+1ht+1(xi)=e−wt+1∑
i:yiht+1(xi)=1D(it+1)+ewt+1∑
i:yiht+1(xi)=− 1Di(t+1)=e−wt+1(1−t+1) +ewt+1t+1=1
√
1 /t+1− 1(1−t+1) +√
1 /t+1− 1 t+1=
√
t+1
1 −t+1(1−t+1) +√
1 −t+1
t+1t+1= 2√
t+1(1−t+1).By our assumption,t+1≤^12 −γ. Since the functiong(a) =a(1−a) is mono-
tonically increasing in [0, 1 /2], we obtain that2
√
t+1(1−t+1)≤ 2√(
1
2
−γ)(
1
2
+γ)
=
√
1 − 4 γ^2.