Understanding Machine Learning: From Theory to Algorithms

(Jeff_L) #1

266 Nearest Neighbor



  1. We use the notationy∼pas a shorthand for “yis a Bernoulli random variable
    with expected valuep.” Prove the following lemma:
    lemma19.7 Letk≥ 10 and letZ 1 ,...,Zkbe independent Bernoulli random
    variables withP[Zi= 1] =pi. Denotep=^1 k



ipiandp

′= 1

k

∑k
i=1Zi. Show
that

Z E

1 ,...,Zk
y∼Pp[y^6 =^1 [p′>^1 /2]]≤

(

1 +


8

k

)

y∼Pp[y^6 =^1 [p>^1 /2]].

Hints:

W.l.o.g. assume thatp≤ 1 /2. Then,Py∼p[y 6 = (^1) [p> 1 /2]] =p. Lety′= (^1) [p′> 1 /2].



  • Show that


Z E
1 ,...,Zk
y∼Pp[y^6 =y′]−p=Z P
1 ,...,Zk

[p′> 1 /2](1− 2 p).


  • Use Chernoff’s bound (Lemma B.3) to show that


P[p′> 1 /2]≤e−kph(
21 p−^1 )
,

where
h(a) = (1 +a) log(1 +a)−a.


  • To conclude the proof of the lemma, you can rely on the following inequality
    (without proving it): For everyp∈[0, 1 /2] andk≥10:


(1− 2 p)e−kp+

k 2 (log(2p)+1)


8

kp.


  1. Fix somep,p′∈[0,1] andy′∈{ 0 , 1 }. Show that


yP∼p[y^6 =y′]≤y∼Pp′[y^6 =y′] +|p−p′|.


  1. Conclude the proof of the theorem according to the following steps:

    • As in the proof of Theorem 19.3, six some >0 and letC 1 ,...,Crbe the
      cover of the setXusing boxes of length. For eachx,x′in the same
      box we have‖x−x′‖≤





d. Otherwise,‖x−x′‖≤ 2


d. Show that

ES[LD(hS)]≤ES




i:|Ci∩S|<k

P[Ci]



+ maxi P
S,(x,y)

[

hS(x) 6 =y| ∀j∈[k],‖x−xπj(x)‖≤


d

]

. (19.3)


  • Bound the first summand using Lemma 19.6.

  • To bound the second summand, let us fixS|xandxsuch that all thek
    neighbors ofxinS|xare at distance of at most



dfromx. W.l.o.g
assume that thekNN arex 1 ,...,xk. Denotepi=η(xi) and letp=
1
k


ipi. Use Exercise 3 to show that

y E
1 ,...,yj

P

y∼η(x)

[hS(x) 6 =y]≤y E
1 ,...,yj
y∼Pp[hS(x)^6 =y] +|p−η(x)|.
Free download pdf