334 Dimensionality Reduction
Combining these two claims with Equation (23.5) we get that
‖h‖ 2 ≤‖hT 0 , 1 ‖ 2 +‖hT 0 c, 1 ‖ 2 ≤ 2 ‖hT 0 , 1 ‖ 2 + 2s−^1 /^2 ‖x−xs‖ 1≤ 2(
2 ρ
1 −ρ+ 1)
s−^1 /^2 ‖x−xs‖ 1= 21 +ρ
1 −ρs−^1 /^2 ‖x−xs‖ 1 ,and this will conclude our proof.Proving Claim 1:
To prove this claim we do not use the RIP condition at all but only use the fact
thatx?minimizes the` 1 norm. Takej >1. For eachi∈Tjandi′∈Tj− 1 we
have that|hi|≤|hi′|. Therefore,‖hTj‖∞≤‖hTj− 1 ‖ 1 /s. Thus,
‖hTj‖ 2 ≤s^1 /^2 ‖hTj‖∞≤s−^1 /^2 ‖hTj− 1 ‖ 1.Summing this overj= 2, 3 ,...and using the triangle inequality we obtain that
‖hT 0 c, 1 ‖ 2 ≤∑
j≥ 2‖hTj‖ 2 ≤s−^1 /^2 ‖hT 0 c‖ 1 (23.6)Next, we show that‖hT 0 c‖ 1 cannot be large. Indeed, from the definition ofx?
we have that‖x‖ 1 ≥ ‖x?‖ 1 =‖x+h‖ 1. Thus, using the triangle inequality we
obtain that‖x‖ 1 ≥‖x+h‖ 1 =∑
i∈T 0|xi+hi|+∑
i∈T 0 c|xi+hi|≥‖xT 0 ‖ 1 −‖hT 0 ‖ 1 +‖hT 0 c‖ 1 −‖xT 0 c‖ 1(23.7)
and since‖xT 0 c‖ 1 =‖x−xs‖ 1 =‖x‖ 1 −‖xT 0 ‖ 1 we get that‖hT 0 c‖ 1 ≤‖hT 0 ‖ 1 + 2‖xT 0 c‖ 1. (23.8)
Combining this with Equation (23.6) we get that‖hT 0 c, 1 ‖ 2 ≤s−^1 /^2(
‖hT 0 ‖ 1 + 2‖xT 0 c‖ 1)
≤‖hT 0 ‖ 2 + 2s−^1 /^2 ‖xT 0 c‖ 1 ,
which concludes the proof of claim 1.Proving Claim 2:
For the second claim we use the RIP condition to get that(1−)‖hT 0 , 1 ‖^22 ≤‖WhT 0 , 1 ‖^22. (23.9)
SinceWhT 0 , 1 =Wh−∑
j≥ 2 WhTj=−∑
j≥ 2 WhTjwe have that
‖WhT 0 , 1 ‖^22 =−∑
j≥ 2〈WhT 0 , 1 ,WhTj〉=−∑
j≥ 2〈WhT 0 +WhT 1 ,WhTj〉.From the RIP condition on inner products we obtain that for alli∈ { 1 , 2 }and
j≥2 we have
|〈WhTi,WhTj〉|≤‖hTi‖ 2 ‖hTj‖ 2.