Technical Lemmas 421
Using Stirling’s approximation we further have that
≤
(em
d
)d(
1 +
(
d
e
)d
(m−d)
(d+ 1)
√
2 πd(d/e)d
)
=
(em
d
)d(
1 +
√ m−d
2 πd(d+ 1)
)
=
(em
d
)d
·
d+ 1 + (m−d)/
√
2 πd
d+ 1
≤
(em
d
)d
·
d+ 1 + (m−d)/ 2
d+ 1
=
(em
d
)d
·
d/2 + 1 +m/ 2
d+ 1
≤
(em
d
)d
· m
d+ 1
,
where in the last inequality we used the assumption thatd≤m−2. On the
other hand,
(
em
d+ 1
)d+1
=
(em
d
)d
·
em
d+ 1·
(
d
d+ 1
)d
=
(em
d
)d
·
em
d+ 1
·
1
(1 + 1/d)d
≥
(em
d
)d
·
em
d+ 1
·
1
e
=
(em
d
)d
·
m
d+ 1,
which proves our inductive argument.
lemmaA.6 For alla∈Rwe have
ea+e−a
2 ≤e
a^2 / (^2).
Proof Observe that
ea=
∑∞
n=0
an
n!
.
Therefore,
ea+e−a
2 =
∑∞
n=0
a^2 n
(2n)!,
and
ea
(^2) / 2
∑∞
n=0
a^2 n
2 nn!
.
Observing that (2n)!≥ 2 nn! for everyn≥0 we conclude our proof.