Technical Lemmas 421Using Stirling’s approximation we further have that
≤
(em
d)d(
1 +(
d
e)d
(m−d)
(d+ 1)√
2 πd(d/e)d)
=
(em
d)d(
1 +
√ m−d
2 πd(d+ 1))
=
(em
d)d
·d+ 1 + (m−d)/√
2 πd
d+ 1
≤(em
d)d
·d+ 1 + (m−d)/ 2
d+ 1
=(em
d)d
·d/2 + 1 +m/ 2
d+ 1
≤(em
d)d
· m
d+ 1,
where in the last inequality we used the assumption thatd≤m−2. On the
other hand,
(
em
d+ 1
)d+1
=(em
d)d
·em
d+ 1·(
d
d+ 1)d=
(em
d)d
·em
d+ 1·
1
(1 + 1/d)d≥(em
d)d
·em
d+ 1·
1
e
=(em
d)d
·m
d+ 1,which proves our inductive argument.
lemmaA.6 For alla∈Rwe have
ea+e−a
2 ≤ea^2 / (^2).
Proof Observe that
ea=
∑∞
n=0an
n!.
Therefore,
ea+e−a
2 =∑∞
n=0a^2 n
(2n)!,and
ea(^2) / 2
∑∞
n=0a^2 n
2 nn!.
Observing that (2n)!≥ 2 nn! for everyn≥0 we conclude our proof.