2.5. The Correlation Coefficient 129by changing integrals to sums. LetE(Y|x)=a+bx.FromE(Y|x)=∫∞−∞yf(x, y)dyf 1 (x)=a+bx,we have ∫∞−∞yf(x, y)dy=(a+bx)f 1 (x). (2.5.6)If both members of Equation (2.5.6) are integrated onx, it is seen that
E(Y)=a+bE(X)or
μ 2 =a+bμ 1 , (2.5.7)
whereμ 1 =E(X)andμ 2 =E(Y). If both members of Equation (2.5.6) are first
multiplied byxandthenintegratedonx,wehave
E(XY)=aE(X)+bE(X^2 ),or
ρσ 1 σ 2 +μ 1 μ 2 =aμ 1 +b(σ 12 +μ^21 ), (2.5.8)
whereρσ 1 σ 2 is the covariance ofXandY. The simultaneous solution of equations
(2.5.7) and (2.5.8) yields
a=μ 2 −ρσ 2
σ 1μ 1 and b=ρσ 2
σ 1.These values give the first result (2.5.4).
Next, the conditional variance ofYis given by
Var(Y|x)=∫∞−∞[
y−μ 2 −ρ
σ 2
σ 1(x−μ 1 )] 2
f 2 | 1 (y|x)dy=∫∞−∞[
(y−μ 2 )−ρσ 2
σ 1(x−μ 1 )] 2
f(x, y)dyf 1 (x). (2.5.9)
This variance is nonnegative and is at most a function ofxalone. If it is multiplied
byf 1 (x) and integrated onx, the result obtained is nonnegative. This result is
∫∞
−∞∫∞−∞[
(y−μ 2 )−ρσ 2
σ 1(x−μ 1 )] 2
f(x, y)dydx=∫∞−∞∫∞−∞[
(y−μ 2 )^2 − 2 ρσ 2
σ 1(y−μ 2 )(x−μ 1 )+ρ^2σ^22
σ^21(x−μ 1 )^2]
f(x, y)dydx= E[(Y−μ 2 )^2 ]− 2 ρσ 2
σ 1E[(X−μ 1 )(Y−μ 2 )] +ρ^2σ 22
σ 12E[(X−μ 1 )^2 ]= σ^22 − 2 ρσ 2
σ 1ρσ 1 σ 2 +ρ^2σ^22
σ^21σ^21= σ^22 − 2 ρ^2 σ 22 +ρ^2 σ^22 =σ 22 (1−ρ^2 ),