Robert_V._Hogg,_Joseph_W._McKean,_Allen_T._Craig

(Jacob Rumans) #1
148 Multivariate Distributions

may not be one-to-one. Suppose, however, that we can representSas the union of
a finite number, sayk, of mutually disjoint setsA 1 ,A 2 ,...,Akso that

y 1 =u 1 (x 1 ,x 2 ,...,xn),...,yn=un(x 1 ,x 2 ,...,xn)

define a one-to-one transformation of eachAiontoT. Thus to each point inT
there corresponds exactly one point in each ofA 1 ,A 2 ,...,Ak.Fori=1,...,k,let

x 1 =w 1 i(y 1 ,y 2 ,...,yn),x 2 =w 2 i(y 1 ,y 2 ,...,yn),...,xn=wni(y 1 ,y 2 ,...,yn),

denote thekgroups ofninverse functions, one group for each of thesektransfor-
mations. Let the first partial derivatives be continuous and let each


Ji=

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∂w 1 i
∂y 1

∂w 1 i
∂y 2 ···

∂w 1 i
∂yn
∂w 2 i
∂y 1

∂w 2 i
∂y 2 ···

∂w 2 i
∂yn
..
.

..
.

..
.
∂wni
∂y 1

∂wni
∂y 2 ···

∂wni
∂yn

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

,i=1, 2 ,...,k,

be not identically equal to zero inT. Considering the probability of the union
ofkmutually exclusive events and by applying the change-of-variable technique
to the probability of each of these events, it can be seen that the joint pdf of
Y 1 =u 1 (X 1 ,X 2 ,...,Xn),Y 2 =u 2 (X 1 ,X 2 ,...,Xn),...,Yn=un(X 1 ,X 2 ,...,Xn),
is given by

g(y 1 ,y 2 ,...,yn)=

∑k

i=1

f[w 1 i(y 1 ,...,yn),...,wni(y 1 ,...,yn)]|Ji|,

provided that (y 1 ,y 2 ,...,yn)∈T, and equals zero elsewhere. The pdf of anyYi,
sayY 1 ,isthen


g 1 (y 1 )=

∫∞

−∞

···

∫∞

−∞

g(y 1 ,y 2 ,...,yn)dy 2 ···dyn.

Example 2.7.3. LetX 1 andX 2 have the joint pdf defined over the unit circle
given by


f(x 1 ,x 2 )=

{ 1
π^0 <x

2
1 +x
2
2 <^1
0elsewhere.
LetY 1 =X 12 +X 22 andY 2 =X 12 /(X 12 +X 22 ). Thusy 1 y 2 =x^21 andx^22 =y 1 (1−y 2 ).
The supportSmaps ontoT ={(y 1 ,y 2 ): 0<yi< 1 ,i=1, 2 }. For each ordered
pair (y 1 ,y 2 )∈T, there are four points inS,givenby

(x 1 ,x 2 ) such that x 1 =

y 1 y 2 andx 2 =


y 1 (1−y 2 )
(x 1 ,x 2 ) such that x 1 =

y 1 y 2 andx 2 =−


y 1 (1−y 2 )
(x 1 ,x 2 ) such that x 1 =−

y 1 y 2 andx 2 =


y 1 (1−y 2 )
and (x 1 ,x 2 ) such that x 1 =−

y 1 y 2 andx 2 =−


y 1 (1−y 2 ).
Free download pdf