Robert_V._Hogg,_Joseph_W._McKean,_Allen_T._Craig

(Jacob Rumans) #1
6.4. Multiparameter Case: Estimation 391

Thus, the information matrix can be written as (1/b)^2 times a matrix whose entries
are free of the parametersaandb. As Exercise 6.4.12 shows, the off-diagonal entries
of the information matrix are 0 if the pdff(z) is symmetric about 0.


Example 6.4.5(Multinomial Distribution).Consider a random trial which can re-
sult in one, and only one, ofkoutcomes or categories. LetXjbe 1 or 0 depending
on whether thejth outcome occurs or does not, forj=1,...,k. Suppose the prob-
ability that outcomejoccurs ispj; hence,


∑k
j=1pj=1. LetX=(X^1 ,...,Xk−^1 )

andp=(p 1 ,...,pk− 1 )′. The distribution ofXis multinomial; see Section 3.1.
Recall that the pmf is given by

f(x,p)=



k∏− 1

j=1

pxjj




⎝ 1 −

k∑− 1

j=1

pj



1 −Pkj−=1^1 xj
, (6.4.18)

where the parameter space is Ω ={p:0<pj< 1 ,j=1,...,k−1;


∑k− 1
j=1pj<^1 }.
We first obtain the information matrix. The first partial of the log offwith
respect topisimplifies to


∂logf
∂pi

=

xi
pi


1 −

∑k− 1
j=1xj
1 −

∑k− 1
j=1pj

.

The second partial derivatives are given by

∂^2 logf
∂p^2 i

= −

xi
p^2 i


1 −

∑k− 1
j=1xj
(1−

∑k− 1
j=1pj)^2
∂^2 logf
∂pi∂ph

= −

1 −

∑k− 1
j=1xj
(1−

∑k− 1
j=1pj)
2
,i =h<k.

Recall that for this distribution the marginal distribution ofXjis Bernoulli with
meanpj. Recalling thatpk=1−(p 1 +···+pk− 1 ), the expectations of the negatives
of the second partial derivatives are straightforward and result in the information
matrix


I(p)=






1
p 1 +

1
pk

1
pk ···

1
pk
1
pk

1
p 2 +

1
pk ···

1
pk
..
.

..
.

..
.
1
pk

1
pk ···

1
pk− 1 +

1
pk






. (6.4.19)


This is a patterned matrix with inverse [see page 170 of Graybill (1969)],


I−^1 (p)=






p 1 (1−p 1 ) −p 1 p 2 ··· −p 1 pk− 1
−p 1 p 2 p 2 (1−p 2 ) ··· −p 2 pk− 1
..
.

..
.

..
.
−p 1 pk− 1 −p 2 pk− 1 ··· pk− 1 (1−pk− 1 )






. (6.4.20)

Free download pdf