6.5. Multiparameter Case: Testing 399where the parameter space isω={p:0<p< 1 / 2 }. The likelihood underωisL(p)=pt^1 +t^2 (1− 2 p)n−t^1 −t^2. (6.5.15)Differentiating logL(p) with respect topand setting the derivative to 0 results in
the following maximum likelihood estimate, underω:
̂p 0 =t 1 +t 2
2 n=p̂ 1 +̂p 2
2, (6.5.16)wherêp 1 andp̂ 2 are the mles under Ω. The likelihood function evaluated at the mle
underωsimplifies to
L(ˆω)=(
pˆ 1 +ˆp 2
2)n(ˆp 1 +ˆp 2 )
(1−pˆ 1 −ˆp 2 )n(1−pˆ^1 −pˆ^2 ). (6.5.17)The reciprocal of the likelihood ratio test statistic then simplifies to
Λ−^1 =(
2 p̂ 1
̂p 1 +p̂ 2)npb 1 (
2 p̂ 2
p̂ 1 +̂p 2)nbp 2. (6.5.18)
Based on Theorem 6.5.11, an asymptotic levelαtest rejectsH 0 if 2 log Λ−^1 >χ^2 α(1).
This is an example where the Wald’s test can easily be formulated. The con-
straint underH 0 isp 1 −p 2 = 0. Hence, the Wald-type statistic isW=̂p 1 −p̂ 2 ,
which can be expressed asW=[1,−1][p̂ 1 ;̂p 2 ]′. Recall that the information matrix
and its inverse were found forkcategories in Example 6.4.5. From Theorem 6.4.1,
we then have
[
p̂ 1
p̂ 2
]
is approximatelyN 2((
p 1
p 2)
,^1 n[
p 1 (1−p 1 ) −p 1 p 2
−p 1 p 2 p 2 (1−p 2 )]). (6.5.19)
As shown in Example 6.4.5, the finite sample moments are the same as the asymp-
totic moments. Hence the variance ofWis
Var(W)=[1,−1]1
n[
p 1 (1−p 1 ) −p 1 p 2
−p 1 p 2 p 2 (1−p 2 )][
1
− 1]=p 1 +p 2 −(p 1 −p 2 )^2
n.BecauseWis asymptotically normal, an asymptotic levelαtest for the hypotheses
(6.5.13) is to rejectH 0 ifχ^2 W≥χ^2 α(1), whereχ^2 W=(̂p 1 −p̂ 2 )^2
(̂p 1 +p̂ 2 −(̂p 1 −p̂ 2 )^2 )/n. (6.5.20)
It also follows that an asymptotic (1−α)100% confidence interval for the difference
p 1 −p 2 is
p̂ 1 −p̂ 2 ±zα/ 2(
p̂ 1 +p̂ 2 −(̂p 1 −p̂ 2 )^2
n) 1 / 2. (6.5.21)