6.6. The EM Algorithm 407By expression (6.6.1), the conditional distributionZgivenXis the ratio of (6.6.12)
to (6.6.11); that is,k(z|θ,x)=∏n 1
i=1f(xi−θ)∏n 2
i=1f(zi−θ)
[1−F(a−θ)]n^2∏n 1
i=1f(xi−θ)=[1−F(a−θ)]−n^2∏n^2i=1f(zi−θ),a<zi,i=1,...,n 2 .(6.6.13)Thus,ZandXare independent, andZ 1 ,...,Zn 2 are iid with the common pdf
f(z−θ)/[1−F(a−θ)], forz>a. Based on these observations and expression
(6.6.13), we have the following derivation:
Q(θ|θ 0 ,x)=Eθ 0 [logLc(θ|x,Z)]= Eθ 0[n 1
∑i=1logf(xi−θ)+∑n^2i=1logf(Zi−θ)]=∑n^1i=1logf(xi−θ)+n 2 Eθ 0 [logf(Z−θ)]=∑n^1i=1logf(xi−θ)+n 2∫∞alogf(z−θ)f(z−θ 0 )
1 −F(a−θ 0 )dz. (6.6.14)This last result is the E step of the EM algorithm. For the M step, we need the
partial derivative ofQ(θ|θ 0 ,x) with respect toθ. This is easily found to be
∂Q
∂θ=−{n
∑^1i=1f′(xi−θ)
f(xi−θ)+n 2∫∞af′(z−θ)
f(z−θ)f(z−θ 0 )
1 −F(a−θ 0 )dz}. (6.6.15)
Assuming thatθ 0 =θ̂ 0 , the first-step EM estimate would be the value ofθ,sayθ̂(1),
which solves∂Q∂θ = 0. In the next example, we obtain the solution for a normal
model.
Example 6.6.1.Assume the censoring model given above, but now assume that
Xhas aN(θ,1) distribution. Thenf(x)=φ(x)=(2π)−^1 /^2 exp{−x^2 / 2 }.Itiseasy
to show thatf′(x)/f(x)=−x. Letting Φ(z) denote, as usual, the cdf of a standard
normal random variable, by (6.6.15) the partial derivative ofQ(θ|θ 0 ,x) with respect
toθfor this model simplifies to
∂Q
∂θ=∑n^1i=1(xi−θ)+n 2∫∞a(z−θ)1
√
2 πexp{−(z−θ 0 )^2 / 2 }
1 −Φ(a−θ 0 )dz= n 1 (x−θ)+n 2∫∞a(z−θ 0 )
1
√
2 πexp{−(z−θ 0 )^2 / 2 }
1 −Φ(a−θ 0 )dz−n 2 (θ−θ 0 )= n 1 (x−θ)+n 2
1 −Φ(a−θ 0 )φ(a−θ 0 )−n 2 (θ−θ 0 ).