Robert_V._Hogg,_Joseph_W._McKean,_Allen_T._Craig

(Jacob Rumans) #1
7.3. Properties of a Sufficient Statistic 429

We illustrate this remark in the following example.

Example 7.3.2.LetX 1 ,X 2 ,X 3 be a random sample from an exponential distri-
bution with meanθ>0, so that the joint pdf is
(
1
θ


) 3
e−(x^1 +x^2 +x^3 )/θ, 0 <xi<∞,

i=1, 2 ,3, zero elsewhere. From the factorization theorem, we see thatY 1 =
X 1 +X 2 +X 3 is a sufficient statistic forθ.Ofcourse,


E(Y 1 )=E(X 1 +X 2 +X 3 )=3θ,

and thusY 1 /3=X is a function of the sufficient statistic that is an unbiased
estimator ofθ.
In addition, letY 2 =X 2 +X 3 andY 3 =X 3. The one-to-one transformation
defined by
x 1 =y 1 −y 2 ,x 2 =y 2 −y 3 ,x 3 =y 3
has Jacobian equal to 1 and the joint pdf ofY 1 ,Y 2 ,Y 3 is


g(y 1 ,y 2 ,y 3 ;θ)=

(
1
θ

) 3
e−y^1 /θ, 0 <y 3 <y 2 <y 1 <∞,

zero elsewhere. The marginal pdf ofY 1 andY 3 is found by integrating outy 2 to
obtain


g 13 (y 1 ,y 3 ;θ)=

(
1
θ

) 3
(y 1 −y 3 )e−y^1 /θ, 0 <y 3 <y 1 <∞,

zero elsewhere. The pdf ofY 3 alone is


g 3 (y 3 ;θ)=

1
θ

e−y^3 /θ, 0 <y 3 <∞,

zero elsewhere, since Y 3 =X 3 is an observation of a random sample from this
exponential distribution.
Accordingly, the conditional pdf ofY 1 ,givenY 3 =y 3 ,is


g 1 | 3 (y 1 |y 3 )=
g 13 (y 1 ,y 3 ;θ)
g 3 (y 3 ;θ)

=

(
1
θ

) 2
(y 1 −y 3 )e−(y^1 −y^3 )/θ, 0 <y 3 <y 1 <∞,

zero elsewhere. Thus

E

(
Y 1
3




∣y^3

)
= E

(
Y 1 −Y 3
3




∣y^3

)
+E

(
Y 3
3




∣y^3

)

=

(
1
3

)∫∞

y 3

(
1
θ

) 2
(y 1 −y 3 )^2 e−(y^1 −y^3 )/θdy 1 +
y 3
3

=

(
1
3

)
Γ(3)θ^3
θ^2
+

y 3
3
=

2 θ
3
+

y 3
3
=Υ(y 3 ).
Free download pdf