8.3. Likelihood Ratio Tests 489independent random variables having the likelihood functionsL(ω)=(
1
2 πθ 3)(n+m)/ 2
exp{
−1
2 θ 3[n
∑1(xi−θ 1 )^2 +∑m1(yi−θ 1 )^2]}and
L(Ω) =(
1
2 πθ 3)(n+m)/ 2
exp{
−1
2 θ 3[n
∑1(xi−θ 1 )^2 +∑m1(yi−θ 2 )^2]}
.If∂logL(ω)/∂θ 1 and∂logL(ω)/∂θ 3 are equated to zero, then (Exercise 8.3.2)∑n1(xi−θ 1 )+∑m1(yi−θ 1 )=01
θ 3[n
∑1(xi−θ 1 )^2 +∑m1(yi−θ 1 )^2]
= n+m. (8.3.2)The solutions forθ 1 andθ 3 are, respectively,u =(n+m)−^1{n
∑1xi+∑m1yi}w =(n+m)−^1{n
∑1(xi−u)^2 +∑m1(yi−u)^2}
.Further,uandwmaximizeL(ω). The maximum isL(ˆω)=(
e−^1
2 πw)(n+m)/ 2
.In a like manner, if
∂logL(Ω)
∂θ 1,∂logL(Ω)
∂θ 2,∂logL(Ω)
∂θ 3are equated to zero, then (Exercise 8.3.3)∑n1(xi−θ 1 )=0∑m1(yi−θ 2 ) = 0 (8.3.3)−(n+m)+
1
θ 3[n
∑1(xi−θ 1 )^2 +∑m1(yi−θ 2 )^2]
=0.