490 Optimal Tests of HypothesesThe solutions forθ 1 ,θ 2 ,andθ 3 are, respectively,u 1 = n−^1∑n1xiu 2 = m−^1∑m1yiw′ =(n+m)−^1[n
∑1(xi−u 1 )^2 +∑m1(yi−u 2 )^2]
,and, further,u 1 ,u 2 ,andw′maximizeL(Ω). The maximum is
L(Ω) =ˆ(
e−^1
2 πw′)(n+m)/ 2
,so thatΛ(x 1 ,...,xn,y 1 ,...,ym)=Λ=L(ˆω)
L(Ω)ˆ=(
w′
w)(n+m)/ 2
.The random variable defined by Λ^2 /(n+m)is
∑n1(Xi−X)^2 +∑m1(Yi−Y)^2∑n1{Xi−[(nX+mY)/(n+m)]}^2 +∑n1{Yi−[(nX+mY)/(n+m)]}^2.Now
∑n1(
Xi−nX+mY
n+m) 2
=∑n1[
(Xi−X)+(
X−nX+mY
n+m)] 2=∑n1(Xi−X)^2 +n(
X−nX+mY
n+m) 2and∑m1(
Yi−nX+mY
n+m) 2
=∑m1[
(Yi−Y)+(
Y−nX+mY
n+m)] 2=∑m1(Yi−Y)^2 +m(
Y−nX+mY
n+m) 2
.Butn(
X−nX+mY
n+m) 2
=m^2 n
(n+m)^2
(X−Y)^2