1.8. Expectation of a Random Variable 61Definition 1.8.1(Expectation).LetXbe a random variable. IfXis a continuous
random variable with pdff(x)and
∫∞
−∞|x|f(x)dx <∞,then theexpectationofXis
E(X)=∫∞−∞xf(x)dx.IfXis a discrete random variable with pmfp(x)and
∑
x|x|p(x)<∞,then theexpectationofXis
E(X)=∑xxp(x).Sometimes the expectationE(X) is called themathematical expectationof
X,theexpected valueofX,orthemeanofX. When the mean designation is
used, we often denote theE(X)byμ; i.e,μ=E(X).
Example 1.8.1(Expectation of a Constant).Consider a constant random variable,
that is, a random variable with all its mass at a constantk. This is a discrete random
variable with pmfp(k) = 1. We have by definition that
E(k)=kp(k)=k. (1.8.1)Example 1.8.2.Let the random variableXof the discrete type have the pmf given
by the tablex 1234p(x) 104 101 103 102Herep(x)=0ifxis not equal to one of the first four positive integers. This
illustrates the fact that there is no need to have a formula to describe a pmf. We
haveE(X)=(1)(
4
10)
+(2)(
1
10)
+(3)(
3
10)
+(4)(
2
10)
=23
10=2. 3.Example 1.8.3.Let the continuous random variableXhave the pdff(x)={
4 x^30 <x< 1
0elsewhere.ThenE(X)=∫ 10x(4x^3 )dx=∫ 104 x^4 dx=4 x^5
5∣
∣
∣
∣10=4
5.