reSeArcH Article
(1) RINSE (removal of incubated nanotubes through selective exfo-
liation). We propose a method of removing CNT aggregate defects
through a selective mechanical exfoliation process. RINSE reduces CNT
aggregate defect density by > 250 × without affecting non-aggregated
CNTs or degrading CNFET performance.
(2) MIXED (metal interface engineering crossed with electrostatic
doping). Our combined CNT doping process leverages both metal con-
tact work function engineering as well as electrostatic doping to realize
a robust wafer-scale CNFET CMOS process. We experimentally yield
entire dies with >10,000 CNFET CMOS digital logic gates (2-input
SourceDrain
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuouououuuuuououuuuuouuououououououououuouououuuouououooooooooooooooooooooooooooooooooooooooo
oooooooSoSoooooooooooooooooooooooooooooooooSoooooooooooooooooooooooSooSooooooSooooSSSSSSS
eeecceeeeeeeceeeeececeeeeeeeceeeeeeeeeeeceeceeeeeeeeeeceeceeeeeeeeeeceeeceeceeeeeeeeceeceeeeceeeeceeeeeeeceeeceeeeeceeeeeeecececeeeeeeeeeeeeeeeeeeeeeececccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
crccccccccccccccccccrcrcccccccrcrcrcrccrcrcrcrcrcrcr
DraDDDDDD
innni
~7 mm
~7 mm Metal layer 1
(signal routing)
Metal layer 2
(CNFET gate +
signal routing)
Metal layer 3
(p-CNFET S/D +
intercell routing)
Metal layer 4
(n-CNFET S/D)
Metal layer 5
(power distribution)
Metal via
Metal via
Metal via
CNT
CNFETs
C
100 μm 40 μm 20 μm 1 μm
CNTs
2
ab
Fig. 1 | RV16X-NANO. a, Image of a fabricated RV16X-NANO chip. The
die area is 6.912 mm × 6.912 mm, with input/output pads placed around
the periphery. Scanning electron microscopy images with increasing
magnification are shown below (one image is false-coloured to match the
colouring in the schematic in b). RV16X-NANO is fabricated entirely from
CNFET CMOS, in a wafer-scalable, VLSI-compatible, and silicon-CMOS
compatible fashion. b, Three-dimensional to-scale rendered schematic
of the RV16X-NANO physical layout (all dimensions are to scale except
for the z axis, which is magnified to clarify each individual vertical
layer). RV16X-NANO leverages a new three-dimensional (3D) physical
architecture in which the CNFETs are physically located in the middle of
the stack, with metal routing both above and below.
Inputs Outputs
LPP>@
XVHV5G
VHQGV0HP5HT
JHWV0HP5HVS
2323,00$8,3&/8,-$/-$/5/2$'
GHIDXOW
RSFRGH /2$'6725(GHIDXOW
RSFRGH
/2$'
GHIDXOW
RSFRGH
23,00/2$'
-$/5
$8,3&/8,
%5$1&+
-$/
6725(GHIDXOW
RSFRGH
,LPPHGLDWVH[WLQVW>@H `
8LPPHGLDWLQVW>@H
%LPPHGLDWVH[W^LQVW>@LQVW>@H
LQVW>@LQVW>@`
-LPPHGLDW^LQVW>@LQVW>@H
LQVW>@`
6LPPHGLDWVH[W^LQVW>@H
LQVW>@`
LQVW>@
>@
Inputs Outputs
FON
UHDG$GGU>@
UHDG$GGU>@
ZULWHBHQ
ZULWH$GGU>@
ZULWH'DWD>@
UHDG'DWD>@
UHDG'DWD>@
G>@T>@
5
HQ
G>@T>@
5
HQ
G>@T>@
5
HQ
UHDG$GGU
UHDG$GGU
FON
DGGUHVVBGHFRGHU
FON
FON
FKDUBRXW>@
PHPBUHT>@
PHPBUHT>@
PHPBDGGU [IRSFRGH 6725(
VWDWH (;(&87(
E
(;(&87(
/2$'B),1,6+,167B)(7&+
VWDWH
VHQGV0HP5HT
^
ESFPHPBZULWHBGDWD>@`
^
EQH[WBSFPHPBZULWHBGDWD>@`
^PHPBZULWHBHQPHPBDGGU>@PHPBZULWHBGDWD`
PHPBZULWHBGDWD>@` FKDUBRXW>@
G>@ T>@
SF
HQ
FON
UVWBQ
VWDWH (;(&87(
G>@ T>@
UVWBQ FON VWDWH
(;(&87(
VWDWH (;(&87(
(;(&87(
VHQGV0HP5HT
,167B)(7&+
JHWV0HP5HVS
/2$'B),1,6+
FONUVWBQ (1BPHPBUHVS(1BSURFBHQSURFBHQB[
QH[WBSF
Inputs
Outputs
Inputs
SF>@
U9DO>@
U9DO>@
LPP>@
PHPBZULWHBHQ>@
PHPBDGGU>@
PHPBZULWHBGDWD>@
UG>@
^^U9DO``
UG
/2$' Outputs
GHIDXOW
E
RSFRGH
E
D>E>@@
E
FLQ
DGG>@
DGG
D>E>@@RURU>@
2323,00/2$'6725(
-$/5
-$/%5$1&+$8,3&
GHIDXOW
U9DO
SF
RSFRGH
LPPGHIDXOW
RSFRGH
aU9DO
U9DO
LVBVLJQHG
23
D>@
E>@
[RU>@
[RU
D>@
E>@
DQG>@
DQG
D>@
VKDPW>@
LVBVLJQHG
VKLIWBULJKVU>@W
D>E>@@HT HT
D>@
E>@
OWX OWX
OW
65
U9DO>@GHIDXOW
U9DO>@
IXQFW LVBVLJQHG
U9DO
23%5$1&+
LPP23,00GHIDXOW
U9DO
RSFRGH
>@
SF>@SF3OXV>@LQFBSF
DGG>@
%(4
%1(
%/78
%*(8
%/7
%*(
GR%UDQFK
>@
>@
^
EOWX`
^
EOW`
$''
25
;25
$1'
65
6//
6/78
6/7
IXQFW
DGG>@
UHJBZULWHBGDWD>@
$8,3&
/8,
-$/-$/5
2323,00/2$'6725(
%5$1&+GHIDXOW
SF3OXV
LPP
RSFRGH
QH[WBSF>@
ZULWH3&LPPWRUG
ZULWHLPWRUGP
%5$1&+
-$/-$/5
2323,00/2$'6725(
/8,$8,3&GHIDXOW
DGGUHVVIRFRQGLWLRQDUO
EUDQFK
[IIIH
LQVW>@
× RSFRGHLQVW>@
× LVBVLJQHGLQVW>@
× IXQFWLQVW>@
× UGLQVW>@ XQFRQGLWLRQDOMXPSIL[HGDGGUHVVIRU
QH[WDGGUHVVIRUQRQMXPS
Instruction fetch
Write-back
Register
read
Instruction decode
Execute +
memory
access
PC
Instruction
fetch
Instruction
decode
Register
read
Execute +
memory access
Write-back
ALU
MUX
Decode
Register
le
State
Rotate
load
ADDR
MUX
instr
op
next pc
Single memory port
RD
a
b
Fig. 2 | Architecture and design of RV16X-NANO. a, Block diagram
showing the organization of RV16X-NANO, including the instruction
fetch, instruction decode, register read, execute + memory access, and
write-back stages. See Supplementary Information section ‘RISC-V:
Operational Details’ for definitions of terms. b, Schematics describing the
high-level register transfer level (RTL) description of each stage, including
inputs, outputs and signal connections. Additional information on the
RV16X-NANO is in the Supplementary Information.
596 | NAtUre | VOl 572 | 29 AUGUSt 2019