Nature - 2019.08.29

(Frankie) #1

reSeArcH Article



  1. Barash, S., Wang, W. & Shi, Y. Human secretory signal peptide description by
    hidden Markov model and generation of a strong artificial signal peptide for
    secreted protein expression. Biochem. Biophys. Res. Commun. 294 , 835–842
    (2002).

  2. Flinterman, M. et al. Delivery of therapeutic proteins as secretable TAT fusion
    products. Mol. Ther. 17 , 334–342 (2009).

  3. Shaner, N. C., Steinbach, P. A. & Tsien, R. Y. A guide to choosing fluorescent
    proteins. Nat. Methods 2 , 905–909 (2005).

  4. del Pozo Martin, Y. et al. Mesenchymal cancer cell-stroma crosstalk promotes
    niche activation, epithelial reversion, and metastatic colonization. Cell Rep. 13 ,
    2456–2469 (2015).

  5. Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases.
    Nat. Rev. Cancer 17 , 302–317 (2017).

  6. Wculek, S. K. & Malanchi, I. Neutrophils support lung colonization of metastasis-
    initiating breast cancer cells. Nature 528 , 413–417 (2015).

  7. Coffelt, S. B., Wellenstein, M. D. & de Visser, K. E. Neutrophils in cancer: neutral
    no more. Nat. Rev. Cancer 16 , 431–446 (2016).

  8. Singhal, S. et al. Origin and role of a subset of tumor-associated neutrophils
    with antigen-presenting cell features in early-stage human lung cancer. Cancer
    Cell 30 , 120–135 (2016).

  9. Blomberg, O. S., Spagnuolo, L. & de Visser, K. E. Immune regulation of
    metastasis: mechanistic insights and therapeutic opportunities. Dis. Model.
    Mech. 11 , dmm036236 (2018).

  10. Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of
    the tumor microenvironment. Cell 141 , 52–67 (2010).

  11. Kowanetz, M. et al. Granulocyte-colony stimulating factor promotes lung
    metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc. Natl Acad.
    Sci. USA 107 , 21248–21255 (2010).

  12. Qian, B.-Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-
    tumour metastasis. Nature 475 , 222–225 (2011).

  13. Acharyya, S. et al. A CXCL1 paracrine network links cancer chemoresistance
    and metastasis. Cell 150 , 165–178 (2012).

  14. Oskarsson, T. et al. Breast cancer cells produce tenascin C as a metastatic niche
    component to colonize the lungs. Nat. Med. 17 , 867–874 (2011).

  15. Erez, N. Cancer: Opening LOX to metastasis. Nature 522 , 41–42 (2015).

  16. Onnis, B., Fer, N., Rapisarda, A., Perez, V. S. & Melillo, G. Autocrine production of
    IL-11 mediates tumorigenicity in hypoxic cancer cells. J. Clin. Invest. 123 ,
    1615–1629 (2013).

  17. Malanchi, I. et al. Interactions between cancer stem cells and their niche govern
    metastatic colonization. Nature 481 , 85–89 (2012).
    20. Su, F., Overholtzer, M., Besser, D. & Levine, A. J. WISP-1 attenuates p53-
    mediated apoptosis in response to DNA damage through activation of the Akt
    kinase. Genes Dev. 16 , 46–57 (2002).
    21. Costa, A. et al. Fibroblast heterogeneity and immunosuppressive environment
    in human breast cancer. Cancer Cell 33 , 463–479 (2018).
    22. Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote
    breast cancer metastasis. Nature 449 , 557–563 (2007).
    23. Hosaka, K. et al. Pericyte-fibroblast transition promotes tumor growth and
    metastasis. Proc. Natl Acad. Sci. USA 113 , E5618–E5627 (2016).
    24. Murgai, M. et al. KLF4-dependent perivascular cell plasticity mediates
    pre-metastatic niche formation and metastasis. Nat. Med. 23 , 1176–1190
    (2017).
    25. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung
    epithelium using single-cell RNA-seq. Nature 509 , 371–375 (2014).
    26. Kim, C. F. B. et al. Identification of bronchioalveolar stem cells in normal lung
    and lung cancer. Cell 121 , 823–835 (2005).
    27. Lee, J.-H. et al. Lung stem cell differentiation in mice directed by endothelial
    cells via a BMP4–NFATc1–thrombospondin-1 axis. Cell 156 , 440–455 (2014).
    28. Zacharias, W. J. et al. Regeneration of the lung alveolus by an evolutionarily
    conserved epithelial progenitor. Nature 555 , 251–255 (2018).
    29. Chapman, H. A. et al. Integrin α 6 β4 identifies an adult distal lung epithelial
    population with regenerative potential in mice. J. Clin. Invest. 121 , 2855–2862
    (2011).
    30. McQualter, J. L., Yuen, K., Williams, B. & Bertoncello, I. Evidence of an epithelial
    stem/progenitor cell hierarchy in the adult mouse lung. Proc. Natl Acad. Sci.
    USA 107 , 1414–1419 (2010).
    31. Nabhan, A. N., Brownfield, D. G., Harbury, P. B., Krasnow, M. A. & Desai, T. J.
    Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells.
    Science 359 , 1118–1123 (2018).
    32. Liu, Y. et al. Tumor exosomal RNAs promote lung pre-metastatic niche
    formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer
    Cell 30 , 243–256 (2016).
    33. Lee, J. W. et al. Hepatocytes direct the formation of a pro-metastatic niche in the
    liver. Nature 567 , 249–252 (2019).


Publisher’s note: Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

608 | NAtUre | VOl 572 | 29 AUGUSt 2019

Free download pdf